Page 65 - Read Online
P. 65
Page 26 of 30 Yoon et al. Energy Mater 2024;4:400063 https://dx.doi.org/10.20517/energymater.2023.146
Copyright
© The Author(s) 2024.
REFERENCES
1. Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE 2012;100:1518-34. DOI
2. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76. DOI PubMed
3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67. DOI PubMed
4. Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev
2019;2:1-28. DOI
5. Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270:590-3. DOI
6. Palomares V, Casas-cabanas M, Castillo-martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research
path. Energy Environ Sci 2013;6:2312-37. DOI
7. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T. Na-ion batteries, recent advances and present
challenges to become low cost energy storage systems. Energy Environ Sci 2012;5:5884-901. DOI
8. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and
application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67. DOI
9. Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for
advanced potassium-ion batteries. Mater Today 2021;48:241-69. DOI
10. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion
batteries. Small 2021;17:e1903194. DOI PubMed
11. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying
reaction mechanism. Adv Funct Mater 2018;28:1703857. DOI
12. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance
potassium-ion batteries. ACS Nano 2018;12:12932-40. DOI
13. Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun
2018;54:11773-6. DOI
14. Hwang IS, Lee YH, Yoon JM, Hwa Y, Park CM. GaSb nanocomposite: new high-performance anode material for Na- and K-ion
batteries. Compos Part B Eng 2022;243:110142. DOI
15. Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high
potassium storage performance: a review. Energy Mater 2023;3:300044. DOI
16. Fu T, Li PC, He HC, Ding SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe S nanofibers with
9 10
controllable particles distribution for stable potassium-ion storage. Rare Met 2023;42:111-21. DOI
17. Finegan DP, Scheel M, Robinson JB, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat
Commun 2015;6:6924. DOI PubMed PMC
18. Takada K, Inada T, Kajiyama A, et al. Solid state batteries with sulfide-based solid electrolytes. Solid State Ionics 2004;172:25-30.
DOI
19. Yu S, Siegel DJ. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS
Appl Mater Inter 2018;10:38151-8. DOI
20. Lu Y, Zhao CZ, Yuan H, Cheng XB, Huang JQ, Zhang Q. Critical Current density in solid-state lithium metal batteries: mechanism,
influences, and strategies. Adv Funct Mater 2021;31:2009925. DOI
21. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by
nanoscale interfacial modification. Adv Mater 2006;18:2226-9. DOI
22. Xia X, Dahn JR. Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J Electrochem Soc
2012;159:A515-9. DOI
23. Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001;148:A803.
DOI
24. Irisarri E, Ponrouch A, Palacin MR. Review - hard carbon negative electrode materials for sodium-ion batteries. J Electrochem Soc
2015;162:A2476-82. DOI
25. Takada K, Inada T, Kajiyama A, et al. Solid-state lithium battery with graphite anode. Solid State Ionics 2003;158:269-74. DOI
26. Höltschi L, Borca CN, Huthwelker T, et al. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion
batteries. Electrochim Acta 2021;389:138735. DOI
27. Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 2010;39:3115-41. DOI
PubMed
28. Liu N, Li W, Pasta M, Cui Y. Nanomaterials for electrochemical energy storage. Front Phys 2014;9:323-50. DOI
29. Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev 2014;114:11444-502. DOI PubMed
30. Nam KH, Park CM. Layered Sb Te and its nanocomposite: a new and outstanding electrode material for superior rechargeable Li-ion
2 3
batteries. J Mater Chem A 2016;4:8562-5. DOI
31. Hwang IS, Lee YH, Ganesan V, Hwa Y, Park CM. High-energy-density gallium antimonide compound anode and optimized
nanocomposite fabrication route for Li-ion batteries. ACS Appl Energy Mater 2022;5:8940-51. DOI