Page 65 - Read Online
P. 65

Page 26 of 30           Yoon et al. Energy Mater 2024;4:400063  https://dx.doi.org/10.20517/energymater.2023.146

               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE 2012;100:1518-34.  DOI
               2.       Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.  DOI  PubMed
               3.       Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.  DOI  PubMed
               4.       Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev
                    2019;2:1-28.  DOI
               5.       Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270:590-3.  DOI
               6.       Palomares V, Casas-cabanas M, Castillo-martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research
                    path. Energy Environ Sci 2013;6:2312-37.  DOI
               7.       Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T. Na-ion batteries, recent advances and present
                    challenges to become low cost energy storage systems. Energy Environ Sci 2012;5:5884-901.  DOI
               8.       Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and
                    application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.  DOI
               9.       Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for
                    advanced potassium-ion batteries. Mater Today 2021;48:241-69.  DOI
               10.       Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion
                    batteries. Small 2021;17:e1903194.  DOI  PubMed
               11.       Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying
                    reaction mechanism. Adv Funct Mater 2018;28:1703857.  DOI
               12.       An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance
                    potassium-ion batteries. ACS Nano 2018;12:12932-40.  DOI
               13.       Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun
                    2018;54:11773-6.  DOI
               14.       Hwang IS, Lee YH, Yoon JM, Hwa Y, Park CM. GaSb nanocomposite: new high-performance anode material for Na- and K-ion
                    batteries. Compos Part B Eng 2022;243:110142.  DOI
               15.       Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high
                    potassium storage performance: a review. Energy Mater 2023;3:300044.  DOI
               16.       Fu T, Li PC, He HC, Ding SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe S  nanofibers with
                                                                                            9 10
                    controllable particles distribution for stable potassium-ion storage. Rare Met 2023;42:111-21.  DOI
               17.       Finegan DP, Scheel M, Robinson JB, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat
                    Commun 2015;6:6924.  DOI  PubMed  PMC
               18.      Takada K, Inada T, Kajiyama A, et al. Solid state batteries with sulfide-based solid electrolytes. Solid State Ionics 2004;172:25-30.
                    DOI
               19.       Yu S, Siegel DJ. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS
                    Appl Mater Inter 2018;10:38151-8.  DOI
               20.       Lu Y, Zhao CZ, Yuan H, Cheng XB, Huang JQ, Zhang Q. Critical Current density in solid-state lithium metal batteries: mechanism,
                    influences, and strategies. Adv Funct Mater 2021;31:2009925.  DOI
               21.       Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by
                    nanoscale interfacial modification. Adv Mater 2006;18:2226-9.  DOI
               22.       Xia  X,  Dahn  JR.  Study  of  the  reactivity  of  Na/hard  carbon  with  different  solvents  and  electrolytes.  J  Electrochem  Soc
                    2012;159:A515-9.  DOI
               23.       Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001;148:A803.
                    DOI
               24.       Irisarri E, Ponrouch A, Palacin MR. Review - hard carbon negative electrode materials for sodium-ion batteries. J Electrochem Soc
                    2015;162:A2476-82.  DOI
               25.       Takada K, Inada T, Kajiyama A, et al. Solid-state lithium battery with graphite anode. Solid State Ionics 2003;158:269-74.  DOI
               26.       Höltschi L, Borca CN, Huthwelker T, et al. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion
                    batteries. Electrochim Acta 2021;389:138735.  DOI
               27.       Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 2010;39:3115-41.  DOI
                    PubMed
               28.       Liu N, Li W, Pasta M, Cui Y. Nanomaterials for electrochemical energy storage. Front Phys 2014;9:323-50.  DOI
               29.       Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev 2014;114:11444-502.  DOI  PubMed
               30.       Nam KH, Park CM. Layered Sb Te  and its nanocomposite: a new and outstanding electrode material for superior rechargeable Li-ion
                                         2  3
                    batteries. J Mater Chem A 2016;4:8562-5.  DOI
               31.       Hwang IS, Lee YH, Ganesan V, Hwa Y, Park CM. High-energy-density gallium antimonide compound anode and optimized
                    nanocomposite fabrication route for Li-ion batteries. ACS Appl Energy Mater 2022;5:8940-51.  DOI
   60   61   62   63   64   65   66   67   68   69   70