Page 61 - Read Online
P. 61

Page 22 of 30                                                      Yoon et al. Energy Mater 2024;4:400063  https://dx.doi.org/10.20517/energymater.2023.146

               Table 4. K storage properties of Sb-based PIB anodes
                                                  Electrolyte                                                                   Rate capability
                                                                                                                    -1
                Material                                               Binder   ICE (%)  Cyclability after the Xth cycle (mAh g )  Current   Reversible   Ref.
                                     Salt       Solvent                                                                      rate    capacity
                                                                                                                                          -1
                                                                                                                                -1
                                                                                                                             (A g )  (mAh g )
                Sb/C                 1.0 M KFSI  EC:DEC = 1:1 vol%     CMC      64.6    470 (X = 50)                         -       -         [105]
                Pristine Sb          4.0 M KFSI  DME                   PAA/CMC  74.2    628 (X = 100)                        3.0     305       [106]
                Commercial Sb        1.0 M KFSI  ethylene glycol diethyl ether  CMC  69.4  573 (X = 180)                     0.5     443       [107]
                Flower-like Sb O C   3.0 M KFSI  EC:DEC = 1:1 vol%     PVDF     27.8    190 (X = 40)                         0.5     105       [108]
                        4  5 l2
                Honeycomb-like porous Sb  4.0 M KFSI  DME              PAA      74.4    551 (X = 80)                         2.0     442       [109]
                Sb/Cu Si  nanowire   4.0 M KFSI  DME                   Binder-free  76.0  250 (X = 1,250)                    4.0     105       [110]
                    15  4
                Sb QD/ MXene aerogel  1.0 M KPF 6  EC:PC = 1:1 vol%    CMC      47.7    521 (X = 106)                        3.2     246       [111]
                3D macroporous Sb/C   5.0 M KFSI  DME                  CMC      76.2    342 (X = 260)                        6.4     176       [112]
                Nanoporous Sb        0.8 M KPF 6  EC:DEC = 1:1 vol%    CMC      71.0    318 (X = 50)                         0.5     265       [12]
                Sb/CSN               4.0 M KTFSI  EC:DEC = 1:1 vol%    Alginate  61.0   551 (X = 100)                        0.2     504       [69]
                Sb/C/rGO             0.8 M KFSI  EC:DEC = 1:1 vol%     CMC      46.3    310 (X = 100)                        1.5     110       [70]
                Sb/NSF-C             5.0 M KFSI  DME                   CMC      55.1    363 (X = 200)                        1.0     287       [113]
                Sb/CNS               1.0 M KPF  EC:DMC = 1:1 vol%      CMC      48.0    247 (X = 600)                        2.0     101       [114]
                                            6
                Sb/C PNFs            1.0 M KPF 6  EC:DEC = 1:1 vol%    PMMA     71.3    264 (X = 500)                        5.0     208       [115]
                BiSb/C               5.0 M KFSI  DME                   Alginate  70.2   320 (X = 600)                        2.0     152       [116]
                Sb 0.25 Bi 0.75 /C   3.0 M KFSI  DME                   PVDF     45.0    302 (X = 500)                        0.5     276       [117]
                Layered Sn-Sb        4.0 M KFSI  EMC                   CMC      68.0    296 (X = 150)                        5.0     118       [118]
                Sb/rGO               0.8 M KPF 6  EC:DEC = 1:1 vol%    CMC      49.3    300 (X = 40)                         0.5     210       [119]



               Sb-based ASSLIB anodes
               Although solid electrolytes provide significant advantages in terms of rigidity, thermal stability, and nonflammability, the direct utilization of Li-metal anodes
               can induce dendrite formation resulting in short circuits, which remains a critical challenge for ASSLIB development . To address this issue, alloy-based
                                                                                                                    [122]
               anodes that do not form dendrites have been considered. Lewis et al. investigated the critical differences in the SEI layer formation dynamics of LIBs and
               ASSLIBs, emphasizing the potential benefits of alloy anodes . Due to its immobility, the solid electrolyte in an ASSLIB inhibits excessive SEI layer formation
                                                                 [123]
               and subsequent electrolyte depletion during continuous cycling. Therefore, alloy-based anodes form mechanically and chemically denser and more stable SEI
               layers compared to those of LIBs.
   56   57   58   59   60   61   62   63   64   65   66