Page 66 - Read Online
P. 66
Yoon et al. Energy Mater 2024;4:400063 https://dx.doi.org/10.20517/energymater.2023.146 Page 27 of 30
32. Tian H, Tian H, Wang S, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon
cathode. Nat Commun 2020;11:5025. DOI PubMed PMC
33. Park CM, Sohn HJ. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Adv Mater 2010;22:47-52.
DOI PubMed
34. Park CM, Sohn HJ. Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem
Mater 2008;20:3169-73. DOI
35. Zhao Q, Meng Y, Su L, Cen W, Wang Q, Xiao D. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with
excellent lithium and sodium storage behavior. J Colloid Interface Sci 2022;608:265-74. DOI
36. He B, Feng L, Hong G, et al. A generic F-doped strategy for biomass hard carbon to achieve fast and stable kinetics in sodium/
potassium-ion batteries. Chem Eng J 2024;490:151636. DOI
37. Sung JH, Park CM. Amorphized Sb-based composite for high-performance Li-ion battery anodes. J Electroanal Chem 2013;700:12-
6. DOI
38. Sung JH, Park CM. Sb-based nanostructured composite with embedded TiO for Li-ion battery anodes. Mater Lett 2013;98:15-8.
2
DOI
39. Chen X, Mu Y, Liao Z, et al. Advancing high-performance one-dimensional Si/carbon anodes: current status and challenges. Carbon
Neutral 2024;3:199-221. DOI
40. Ying H, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci
2017;4:1700298. DOI PubMed PMC
41. Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries.
NPJ Comput Mater 2018;4:15. DOI
42. He M, Kravchyk K, Walter M, Kovalenko MV. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes:
nano versus bulk. Nano Lett 2014;14:1255-62. DOI PubMed
43. Park CM, Jeon KJ. Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun 2011;47:2122-4. DOI
PubMed
44. Nam KH, Park CM. 2D layered Sb Se -based amorphous composite for high-performance Li- and Na-ion battery anodes. J Power
3
2
Sources 2019;433:126639. DOI
45. Choi JH, Ha CW, Choi HY, Seong JW, Park CM, Lee SM. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J
Power Sources 2018;386:34-9. DOI
46. Park CM, Sohn HJ. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries.
Electrochim Acta 2009;54:6367-73. DOI
47. Park MG, Song JH, Sohn JS, Lee CK, Park CM. Co-Sb intermetallic compounds and their disproportionated nanocomposites as high-
performance anodes for rechargeable Li-ion batteries. J Mater Chem A 2014;2:11391-9. DOI
48. Park CM, Sohn HJ. Electrochemical Characteristics of TiSb and Sb/TiC/C nanocomposites as anodes for rechargeable Li-ion
2
batteries. J Electrochem Soc 2010;157:A46. DOI
49. Liu D, Liu ZJ, Li X, et al. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell
lithium-ion batteries. Small 2017;13:1702000. DOI
50. Park CM, Sohn HJ. Antimonides (FeSb , CrSb ) with orthorhombic structure and their nanocomposites for rechargeable Li-ion
2 2
batteries. Electrochim Acta 2010;55:4987-94. DOI
51. Seo JU, Park CM. Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li
storage performances. J Mater Chem A 2013;1:15316-22. DOI
52. Li H, Yamaguchi T, Matsumoto S, et al. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun
2020;11:1584. DOI PubMed PMC
53. Park CM, Hwa Y, Sung NE, Sohn HJ. Stibnite (Sb S ) and its amorphous composite as dual electrodes for rechargeable lithium
2 3
batteries. J Mater Chem 2010;20:1097-102. DOI
54. Jang YH, Park CM. High-performance CoSbS-based Na-ion battery anodes. Mater Today Energy 2020;17:100470. DOI
55. Wang F, Chen G, Zhang N, Liu X, Ma R. Engineering of carbon and other protective coating layers for stabilizing silicon anode
materials. Carbon Energy 2019;1:219-45. DOI
56. Meng W, Guo M, Cheng L, Bai Z, Yang F. Effect of polypyrrole coating on lithium storage for hollow Sb microspheres. J Electron
Mater 2019;48:2233-41. DOI
57. Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to
enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 2019;105:106493. DOI
58. Pfeifer K, Arnold S, Budak Ö, et al. Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion
batteries. J Mater Chem A 2020;8:6092-104. DOI
59. Wang S, Lee PK, Yang X, Rogach AL, Armstrong AR, Yu DYW. Polyimide-cellulose interaction in Sb anode enables fast charging
lithium-ion battery application. Mater Today Energy 2018;9:295-302. DOI
60. Park CM, Yoon S, Lee SI, Kim JH, Jung J, Sohn HJ. High-rate capability and enhanced cyclability of antimony-based composites for
lithium rechargeable batteries. J Electrochem Soc 2007;154:A917. DOI
61. Shin J, Kim S, Park H, Won Jang H, Cahill DG, Braun PV. Thermal conductivity of intercalation, conversion, and alloying lithium-
ion battery electrode materials as function of their state of charge. Curr Opin Solid St Mater Sci 2022;26:100980. DOI