Page 66 - Read Online
P. 66

Yoon et al. Energy Mater 2024;4:400063  https://dx.doi.org/10.20517/energymater.2023.146   Page 27 of 30

               32.       Tian H, Tian H, Wang S, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon
                    cathode. Nat Commun 2020;11:5025.  DOI  PubMed  PMC
               33.       Park CM, Sohn HJ. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Adv Mater 2010;22:47-52.
                    DOI  PubMed
               34.       Park CM, Sohn HJ. Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem
                    Mater 2008;20:3169-73.  DOI
               35.       Zhao Q, Meng Y, Su L, Cen W, Wang Q, Xiao D. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with
                    excellent lithium and sodium storage behavior. J Colloid Interface Sci 2022;608:265-74.  DOI
               36.       He B, Feng L, Hong G, et al. A generic F-doped strategy for biomass hard carbon to achieve fast and stable kinetics in sodium/
                    potassium-ion batteries. Chem Eng J 2024;490:151636.  DOI
               37.       Sung JH, Park CM. Amorphized Sb-based composite for high-performance Li-ion battery anodes. J Electroanal Chem 2013;700:12-
                    6.  DOI
               38.       Sung JH, Park CM. Sb-based nanostructured composite with embedded TiO  for Li-ion battery anodes. Mater Lett 2013;98:15-8.
                                                                      2
                    DOI
               39.       Chen X, Mu Y, Liao Z, et al. Advancing high-performance one-dimensional Si/carbon anodes: current status and challenges. Carbon
                    Neutral 2024;3:199-221.  DOI
               40.       Ying H, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci
                    2017;4:1700298.  DOI  PubMed  PMC
               41.       Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries.
                    NPJ Comput Mater 2018;4:15.  DOI
               42.       He M, Kravchyk K, Walter M, Kovalenko MV. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes:
                    nano versus bulk. Nano Lett 2014;14:1255-62.  DOI  PubMed
               43.       Park CM, Jeon KJ. Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun 2011;47:2122-4.  DOI
                    PubMed
               44.       Nam KH, Park CM. 2D layered Sb Se -based amorphous composite for high-performance Li- and Na-ion battery anodes. J Power
                                             3
                                           2
                    Sources 2019;433:126639.  DOI
               45.       Choi JH, Ha CW, Choi HY, Seong JW, Park CM, Lee SM. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J
                    Power Sources 2018;386:34-9.  DOI
               46.       Park CM, Sohn HJ. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries.
                    Electrochim Acta 2009;54:6367-73.  DOI
               47.       Park MG, Song JH, Sohn JS, Lee CK, Park CM. Co-Sb intermetallic compounds and their disproportionated nanocomposites as high-
                    performance anodes for rechargeable Li-ion batteries. J Mater Chem A 2014;2:11391-9.  DOI
               48.       Park CM, Sohn HJ. Electrochemical Characteristics of TiSb  and Sb/TiC/C nanocomposites as anodes for rechargeable Li-ion
                                                             2
                    batteries. J Electrochem Soc 2010;157:A46.  DOI
               49.       Liu D, Liu ZJ, Li X, et al. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell
                    lithium-ion batteries. Small 2017;13:1702000.  DOI
               50.       Park CM, Sohn HJ. Antimonides (FeSb , CrSb ) with orthorhombic structure and their nanocomposites for rechargeable Li-ion
                                               2   2
                    batteries. Electrochim Acta 2010;55:4987-94.  DOI
               51.       Seo JU, Park CM. Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li
                    storage performances. J Mater Chem A 2013;1:15316-22.  DOI
               52.       Li H, Yamaguchi T, Matsumoto S, et al. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun
                    2020;11:1584.  DOI  PubMed  PMC
               53.       Park CM, Hwa Y, Sung NE, Sohn HJ. Stibnite (Sb S ) and its amorphous composite as dual electrodes for rechargeable lithium
                                                      2 3
                    batteries. J Mater Chem 2010;20:1097-102.  DOI
               54.       Jang YH, Park CM. High-performance CoSbS-based Na-ion battery anodes. Mater Today Energy 2020;17:100470.  DOI
               55.       Wang F, Chen G, Zhang N, Liu X, Ma R. Engineering of carbon and other protective coating layers for stabilizing silicon anode
                    materials. Carbon Energy 2019;1:219-45.  DOI
               56.       Meng W, Guo M, Cheng L, Bai Z, Yang F. Effect of polypyrrole coating on lithium storage for hollow Sb microspheres. J Electron
                    Mater 2019;48:2233-41.  DOI
               57.       Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to
                    enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 2019;105:106493.  DOI
               58.       Pfeifer K, Arnold S, Budak Ö, et al. Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion
                    batteries. J Mater Chem A 2020;8:6092-104.  DOI
               59.       Wang S, Lee PK, Yang X, Rogach AL, Armstrong AR, Yu DYW. Polyimide-cellulose interaction in Sb anode enables fast charging
                    lithium-ion battery application. Mater Today Energy 2018;9:295-302.  DOI
               60.       Park CM, Yoon S, Lee SI, Kim JH, Jung J, Sohn HJ. High-rate capability and enhanced cyclability of antimony-based composites for
                    lithium rechargeable batteries. J Electrochem Soc 2007;154:A917.  DOI
               61.       Shin J, Kim S, Park H, Won Jang H, Cahill DG, Braun PV. Thermal conductivity of intercalation, conversion, and alloying lithium-
                    ion battery electrode materials as function of their state of charge. Curr Opin Solid St Mater Sci 2022;26:100980.  DOI
   61   62   63   64   65   66   67   68   69   70   71