Page 69 - Read Online
P. 69
Page 30 of 30 Yoon et al. Energy Mater 2024;4:400063 https://dx.doi.org/10.20517/energymater.2023.146
DOI
121. Yoon SU, Kim H, Jin HJ, Yun YS. Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based
anode materials for potassium ion batteries. Appl Surf Sci 2021;547:149193. DOI
122. Wang S, Wu Y, Ma T, Chen L, Li H, Wu F. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano
2022;16:16158-76. DOI
123. Lewis JA, Cavallaro KA, Liu Y, Mcdowell MT. The promise of alloy anodes for solid-state batteries. Joule 2022;6:1418-30. DOI
124. Afyon S, Kravchyk KV, Wang S, et al. Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes.
J Mater Chem A 2019;7:21299-308. DOI
125. Mo F, Ruan J, Fu W, et al. Revealing the role of liquid metals at the anode-electrolyte interface for all solid-state lithium-ion
batteries. ACS Appl Mater Interfaces 2020;12:38232-40. DOI
126. Long Z, Ruan J, Li S, et al. Could capacitive behavior be triggered in inorganic electrolyte-based all-solid-state batteries? Adv Funct
Mater 2022;32:2205667. DOI
127. Kumari P, Sharma K, Pal P, Kumar M, Ichikawa T, Jain A. Highly efficient & stable Bi & Sb anodes using lithium borohydride as
solid electrolyte in Li-ion batteries. RSC Adv 2019;9:13077-81. DOI PubMed PMC
128. Sharma K, Singh R, Ichikawa T, Kumar M, Jain A. Lithiation mechanism of antimony chalcogenides (Sb X ; X = S, Se, Te)
2
3
electrodes for high-capacity all-solid-state Li-ion battery. Int J Energy Res 2021;45:11135-45. DOI
129. Sharma K, Singh R, Tripathi B, Ichikawa T, Kumar M, Jain A. All-solid-state Li-ion batteries using a combination of Sb S /Li S-P S
2 3 2 2 5
/acetylene black as the electrode composite and LiBH as the electrolyte. ACS Appl Energy Mater 2021;4:6269-76. DOI
4