Page 67 - Read Online
P. 67

Page 28 of 30           Yoon et al. Energy Mater 2024;4:400063  https://dx.doi.org/10.20517/energymater.2023.146

               62.       Chang D, Huo H, Johnston KE, et al. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of
                    Li-Sb electrodes. J Mater Chem A 2015;3:18928-43.  DOI
               63.       Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion
                    batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.  DOI
                    PubMed
               64.       Caputo R. An insight into sodiation of antimony from first-principles crystal structure prediction. J Electron Mater 2016;45:999-
                    1010.  DOI
               65.       Yu  S,  Zhang  X,  Zhang  P.  Prediction  of  new  structures  of  the  Na-Sb  alloy  anode  for  Na-ion  batteries.  J  Phys  Chem  C
                    2022;126:11468-74.  DOI
               66.       Yu  DK,  Park  CM.  Sb-based  intermetallics  and  nanocomposites  as  stable  and  fast  Na-ion  battery  anodes.  Chem  Eng  J
                    2021;409:127380.  DOI
               67.       Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-
                    capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93.  DOI
               68.       Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J Phys
                    Chem C 2018;122:18266-73.  DOI
               69.       Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci
                    2019;12:615-23.  DOI
               70.       Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage
                    properties and discharge mechanisms. ACS Appl Mater Interfaces 2019;11:27973-81.  DOI  PubMed
               71.       Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.  DOI  PubMed
               72.       Bian X, Dong Y, Zhao D, et al. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for
                    rechargeable lithium-/sodium-ion batteries. ACS Appl Mater Interfaces 2020;12:3554-62.  DOI
               73.       Sun Q, Cao Z, Ma Z, et al. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety
                    lithium-ion batteries. ACS Energy Lett 2022;7:3545-56.  DOI
               74.       Cai T, Sun Q, Cao Z, et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion
                    batteries. J Phys Chem C 2022;126:20302-13.  DOI
               75.       Liu X, Tian Y, Cao X, et al. Aerosol-assisted synthesis of spherical Sb/C composites as advanced anodes for lithium ion and sodium
                    ion batteries. ACS Appl Energy Mater 2018;1:6381-7.  DOI
               76.       Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion
                    batteries. Energy Stor Mater 2020;25:572-84.  DOI
               77.       Luo W, Li F, Gaumet J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and
                    sodium storage. Adv Energy Mater 2018;8:1703237.  DOI
               78.       Zhang X, Lai F, Chen Z, He X, Li Q, Wang H. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for
                    lithium ion batteries with superior rate capability and long cycling stability. Electrochim Acta 2018;283:1689-94.  DOI
               79.       Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as
                    high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60.  DOI
               80.       Yu L, Zhang L, Fu J, Yun J, Kim KH. Hierarchical tiny-Sb encapsulated in MOFs derived-carbon and TiO  hollow nanotubes for
                                                                                           2
                    enhanced Li/Na-Ion half-and full-cell batteries. Chem Eng J 2021;417:129106.  DOI
               81.       Yang T, Zhong J, Liu J, et al. A general strategy for antimony-based alloy nanocomposite embedded in swiss-cheese-like nitrogen-
                    doped porous carbon for energy storage. Adv Funct Mater 2021;31:2009433.  DOI
               82.       Coquil G, Fraisse B, Biscaglia S, Aymé-perrot D, Sougrati MT, Monconduit L. ZnSnSb  anode: a solid solution behavior enabling
                                                                              2
                    high rate capability in Li-ion batteries. J Power Sources 2019;441:227165.  DOI
               83.       Su M, Li J, He K, et al. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. J
                    Colloid Interface Sci 2023;629:83-91.  DOI
               84.       Pan Q, Wu Y, Zhong W, et al. Carbon nanosheets encapsulated NiSb nanoparticles as advanced anode materials for lithium-ion
                    batteries. Energy Environ Mater 2020;3:186-91.  DOI
               85.       Yin W, Chai W, Wang K, Ye W, Rui Y, Tang B. Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as
                    excellent anode materials for lithium-ion batteries. J Alloy Compd 2019;797:1249-57.  DOI
               86.       Wang H, Yang X, Wu Q, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure
                    stability for high-efficiency lithium storage. ACS Nano 2018;12:3406-16.  DOI
               87.       Lee JO, Seo JU, Song JH, Park CM, Lee CK. Electrochemical characteristics of ternary compound CoSbS for application in Li
                    secondary batteries. Electrochem Commun 2013;28:71-4.  DOI
               88.       Park MG, Lee CK, Park CM. Amorphized ZnSb-based composite anodes for high-performance Li-ion batteries. RSC Adv
                    2014;4:5830-3.  DOI
               89.       Lu H, Wu L, Xiao L, Ai X, Yang H, Cao Y. Investigation of the effect of fluoroethylene carbonate additive on electrochemical
                    performance of Sb-based anode for sodium-ion batteries. Electrochim Acta 2016;190:402-8.  DOI
               90.       Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb
                    in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources
                    2015;273:14-24.  DOI
   62   63   64   65   66   67   68   69   70   71   72