Page 67 - Read Online
P. 67
Page 28 of 30 Yoon et al. Energy Mater 2024;4:400063 https://dx.doi.org/10.20517/energymater.2023.146
62. Chang D, Huo H, Johnston KE, et al. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of
Li-Sb electrodes. J Mater Chem A 2015;3:18928-43. DOI
63. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion
batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11. DOI
PubMed
64. Caputo R. An insight into sodiation of antimony from first-principles crystal structure prediction. J Electron Mater 2016;45:999-
1010. DOI
65. Yu S, Zhang X, Zhang P. Prediction of new structures of the Na-Sb alloy anode for Na-ion batteries. J Phys Chem C
2022;126:11468-74. DOI
66. Yu DK, Park CM. Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes. Chem Eng J
2021;409:127380. DOI
67. Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-
capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93. DOI
68. Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J Phys
Chem C 2018;122:18266-73. DOI
69. Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci
2019;12:615-23. DOI
70. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage
properties and discharge mechanisms. ACS Appl Mater Interfaces 2019;11:27973-81. DOI PubMed
71. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618. DOI PubMed
72. Bian X, Dong Y, Zhao D, et al. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for
rechargeable lithium-/sodium-ion batteries. ACS Appl Mater Interfaces 2020;12:3554-62. DOI
73. Sun Q, Cao Z, Ma Z, et al. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety
lithium-ion batteries. ACS Energy Lett 2022;7:3545-56. DOI
74. Cai T, Sun Q, Cao Z, et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion
batteries. J Phys Chem C 2022;126:20302-13. DOI
75. Liu X, Tian Y, Cao X, et al. Aerosol-assisted synthesis of spherical Sb/C composites as advanced anodes for lithium ion and sodium
ion batteries. ACS Appl Energy Mater 2018;1:6381-7. DOI
76. Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion
batteries. Energy Stor Mater 2020;25:572-84. DOI
77. Luo W, Li F, Gaumet J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and
sodium storage. Adv Energy Mater 2018;8:1703237. DOI
78. Zhang X, Lai F, Chen Z, He X, Li Q, Wang H. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for
lithium ion batteries with superior rate capability and long cycling stability. Electrochim Acta 2018;283:1689-94. DOI
79. Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as
high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60. DOI
80. Yu L, Zhang L, Fu J, Yun J, Kim KH. Hierarchical tiny-Sb encapsulated in MOFs derived-carbon and TiO hollow nanotubes for
2
enhanced Li/Na-Ion half-and full-cell batteries. Chem Eng J 2021;417:129106. DOI
81. Yang T, Zhong J, Liu J, et al. A general strategy for antimony-based alloy nanocomposite embedded in swiss-cheese-like nitrogen-
doped porous carbon for energy storage. Adv Funct Mater 2021;31:2009433. DOI
82. Coquil G, Fraisse B, Biscaglia S, Aymé-perrot D, Sougrati MT, Monconduit L. ZnSnSb anode: a solid solution behavior enabling
2
high rate capability in Li-ion batteries. J Power Sources 2019;441:227165. DOI
83. Su M, Li J, He K, et al. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. J
Colloid Interface Sci 2023;629:83-91. DOI
84. Pan Q, Wu Y, Zhong W, et al. Carbon nanosheets encapsulated NiSb nanoparticles as advanced anode materials for lithium-ion
batteries. Energy Environ Mater 2020;3:186-91. DOI
85. Yin W, Chai W, Wang K, Ye W, Rui Y, Tang B. Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as
excellent anode materials for lithium-ion batteries. J Alloy Compd 2019;797:1249-57. DOI
86. Wang H, Yang X, Wu Q, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure
stability for high-efficiency lithium storage. ACS Nano 2018;12:3406-16. DOI
87. Lee JO, Seo JU, Song JH, Park CM, Lee CK. Electrochemical characteristics of ternary compound CoSbS for application in Li
secondary batteries. Electrochem Commun 2013;28:71-4. DOI
88. Park MG, Lee CK, Park CM. Amorphized ZnSb-based composite anodes for high-performance Li-ion batteries. RSC Adv
2014;4:5830-3. DOI
89. Lu H, Wu L, Xiao L, Ai X, Yang H, Cao Y. Investigation of the effect of fluoroethylene carbonate additive on electrochemical
performance of Sb-based anode for sodium-ion batteries. Electrochim Acta 2016;190:402-8. DOI
90. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb
in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources
2015;273:14-24. DOI