Page 68 - Read Online
P. 68
Yoon et al. Energy Mater 2024;4:400063 https://dx.doi.org/10.20517/energymater.2023.146 Page 29 of 30
91. Liu Y, Zhou B, Liu S, Ma Q, Zhang WH. Galvanic replacement synthesis of highly uniform Sb nanotubes: reaction mechanism and
enhanced sodium storage performance. ACS Nano 2019;13:5885-92. DOI
92. Liu Y, Qing Y, Zhou B, et al. Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries.
ACS Nano 2023;17:2431-9. DOI
93. Li P, Yu L, Ji S, et al. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as
superior anode for Na-ion batteries. Chem Eng J 2019;374:502-10. DOI
94. Chen B, Qin H, Li K, et al. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-
ion battery anode with ultralong high-rate cycling. Nano Energy 2019;66:104133. DOI
95. Li H, Wang K, Zhou M, et al. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano
2019;13:9533-40. DOI
96. Yang Y, Shi W, Leng S, Cheng H. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced
sodium-ion and potassium-ion batteries. J Colloid Interface Sci 2022;628:41-52. DOI PubMed
97. Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater
2018;13:247-56. DOI
98. Xie M, Li C, Ren S, et al. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-
ion battery anodes. J Mater Chem A 2022;10:15089-100. DOI
99. Zheng X, You J, Fan J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and
rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 2020;77:105123. DOI
100. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony
alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59. DOI
101. Gao H, Niu J, Zhang C, et al. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS
Nano 2018;12:3568-77. DOI
102. Pan J, Yu K, Mao H, et al. Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem Eng J
2020;380:122624. DOI
103. Choi JH, Ha CW, Choi HY, et al. Sb S embedded in amorphous P/C composite matrix as high-performance anode material for
2 3
sodium ion batteries. Electrochim Acta 2016;210:588-95. DOI
104. Nam KH, Choi JH, Park CM. Highly reversible Na-ion reaction in nanostructured Sb Te -C composites as Na-ion battery anodes. J
3
2
Electrochem Soc 2017;164:A2056-64. DOI
105. Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt
chemistry. Adv Energy Mater 2018;8:1703288. DOI
106. Zhou L, Cao Z, Zhang J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion
batteries. Adv Mater 2021;33:2005993. DOI
107. Du X, Gao Y, Zhang B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion
batteries. Adv Funct Mater 2021;31:2102562. DOI
108. Shi Y, Wang L, Zhou D, Wu T, Xiao Z. A flower-like Sb O Cl cluster-based material as anode for potassium ion batteries. Appl Surf
4
5
2
Sci 2022;583:152509. DOI
109. Liu X, Zhu J, Yue L, et al. Green and scalable template-free strategy to fabricate honeycomb-like interconnected porous micro-sized
layered Sb for high-performance potassium storage. Small 2022;18:2204552. DOI
110. Imtiaz S, Kapuria N, Amiinu IS, et al. Directly deposited antimony on a copper silicide nanowire array as a high-performance
potassium-ion battery anode with a long cycle life. Adv Funct Mater 2023;33:2209566. DOI
111. Guo X, Gao H, Wang S, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance
potassium-ion batteries. Nano Lett 2022;22:1225-32. DOI
112. He X, Liu Z, Liao J, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for
potassium-ion batteries. J Mater Chem A 2019;7:9629-37. DOI
113. Shi X, Liu W, Zhao S, et al. Integrated anodes from heteroatoms (N, S, and F) co-doping antimony/carbon composite for efficient
+
+
alkaline ion (Li /K ) storage. ACS Appl Energy Mater 2022;5:12925-36. DOI
114. Han Y, Li T, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage.
Energy Stor Mater 2019;20:46-54. DOI
115. Cao K, Liu H, Jia Y, et al. Flexible antimony@carbon integrated anode for high-performance potassium-ion battery. Adv Mater
Technol 2020;5:2000199. DOI
116. Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-
performance potassium-ion batteries. ACS Nano 2020;14:1018-26. DOI
117. Liu J, Zhang D, Cui J, et al. Construction of the fast potassiation path in Sb Bi @NC anode with ultrahigh cycling stability for
x 1-x
potassium-ion batteries. Small 2023;19:2301444. DOI
118. Ding H, Wang J, Fan L, et al. Sn-Sb compounds with novel structure for stable potassium storage. Chem Eng J 2020;395:125147.
DOI
119. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage
performance and mechanism. Nanoscale 2018;10:13236-41. DOI PubMed
120. Baek S, Jie S, Lee B. Effects of fluoroethylene carbonate additive on potassium metal anode. J Mech Sci Technol 2023;37:3657-65.