Page 68 - Read Online
P. 68

Yoon et al. Energy Mater 2024;4:400063  https://dx.doi.org/10.20517/energymater.2023.146   Page 29 of 30

               91.       Liu Y, Zhou B, Liu S, Ma Q, Zhang WH. Galvanic replacement synthesis of highly uniform Sb nanotubes: reaction mechanism and
                    enhanced sodium storage performance. ACS Nano 2019;13:5885-92.  DOI
               92.       Liu Y, Qing Y, Zhou B, et al. Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries.
                    ACS Nano 2023;17:2431-9.  DOI
               93.       Li P, Yu L, Ji S, et al. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as
                    superior anode for Na-ion batteries. Chem Eng J 2019;374:502-10.  DOI
               94.       Chen B, Qin H, Li K, et al. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-
                    ion battery anode with ultralong high-rate cycling. Nano Energy 2019;66:104133.  DOI
               95.       Li H, Wang K, Zhou M, et al. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano
                    2019;13:9533-40.  DOI
               96.       Yang Y, Shi W, Leng S, Cheng H. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced
                    sodium-ion and potassium-ion batteries. J Colloid Interface Sci 2022;628:41-52.  DOI  PubMed
               97.       Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater
                    2018;13:247-56.  DOI
               98.       Xie M, Li C, Ren S, et al. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-
                    ion battery anodes. J Mater Chem A 2022;10:15089-100.  DOI
               99.       Zheng X, You J, Fan J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and
                    rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 2020;77:105123.  DOI
               100.      Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony
                    alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59.  DOI
               101.      Gao H, Niu J, Zhang C, et al. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS
                    Nano 2018;12:3568-77.  DOI
               102.      Pan J, Yu K, Mao H, et al. Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem Eng J
                    2020;380:122624.  DOI
               103.      Choi JH, Ha CW, Choi HY, et al. Sb S  embedded in amorphous P/C composite matrix as high-performance anode material for
                                             2 3
                    sodium ion batteries. Electrochim Acta 2016;210:588-95.  DOI
               104.      Nam KH, Choi JH, Park CM. Highly reversible Na-ion reaction in nanostructured Sb Te -C composites as Na-ion battery anodes. J
                                                                              3
                                                                            2
                    Electrochem Soc 2017;164:A2056-64.  DOI
               105.      Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt
                    chemistry. Adv Energy Mater 2018;8:1703288.  DOI
               106.      Zhou L, Cao Z, Zhang J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion
                    batteries. Adv Mater 2021;33:2005993.  DOI
               107.      Du X, Gao Y, Zhang B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion
                    batteries. Adv Funct Mater 2021;31:2102562.  DOI
               108.      Shi Y, Wang L, Zhou D, Wu T, Xiao Z. A flower-like Sb O Cl  cluster-based material as anode for potassium ion batteries. Appl Surf
                                                         4
                                                          5
                                                            2
                    Sci 2022;583:152509.  DOI
               109.      Liu X, Zhu J, Yue L, et al. Green and scalable template-free strategy to fabricate honeycomb-like interconnected porous micro-sized
                    layered Sb for high-performance potassium storage. Small 2022;18:2204552.  DOI
               110.      Imtiaz S, Kapuria N, Amiinu IS, et al. Directly deposited antimony on a copper silicide nanowire array as a high-performance
                    potassium-ion battery anode with a long cycle life. Adv Funct Mater 2023;33:2209566.  DOI
               111.      Guo X, Gao H, Wang S, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance
                    potassium-ion batteries. Nano Lett 2022;22:1225-32.  DOI
               112.      He X, Liu Z, Liao J, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for
                    potassium-ion batteries. J Mater Chem A 2019;7:9629-37.  DOI
               113.      Shi X, Liu W, Zhao S, et al. Integrated anodes from heteroatoms (N, S, and F) co-doping antimony/carbon composite for efficient
                                +
                              +
                    alkaline ion (Li /K ) storage. ACS Appl Energy Mater 2022;5:12925-36.  DOI
               114.      Han Y, Li T, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage.
                    Energy Stor Mater 2019;20:46-54.  DOI
               115.      Cao K, Liu H, Jia Y, et al. Flexible antimony@carbon integrated anode for high-performance potassium-ion battery. Adv Mater
                    Technol 2020;5:2000199.  DOI
               116.      Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-
                    performance potassium-ion batteries. ACS Nano 2020;14:1018-26.  DOI
               117.      Liu J, Zhang D, Cui J, et al. Construction of the fast potassiation path in Sb Bi @NC anode with ultrahigh cycling stability for
                                                                       x  1-x
                    potassium-ion batteries. Small 2023;19:2301444.  DOI
               118.      Ding H, Wang J, Fan L, et al. Sn-Sb compounds with novel structure for stable potassium storage. Chem Eng J 2020;395:125147.
                    DOI
               119.      Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage
                    performance and mechanism. Nanoscale 2018;10:13236-41.  DOI  PubMed
               120.      Baek S, Jie S, Lee B. Effects of fluoroethylene carbonate additive on potassium metal anode. J Mech Sci Technol 2023;37:3657-65.
   63   64   65   66   67   68   69   70   71   72   73