Page 33 - Read Online
P. 33
Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60 Page 635
77. Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A
2006;103:13132-7. DOI PubMed PMC
78. Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A adenosine receptor gene deletion or synthetic A antagonist liberate
2A
2A
+
tumor-reactive CD8 T cells from tumor-induced immunosuppression. J Immunol 2018;201:782-91. DOI PubMed PMC
79. Newton HS, Chimote AA, Arnold MJ, Wise-Draper TM, Conforti L. Targeted knockdown of the adenosine A receptor by lipid NPs
2A
rescues the chemotaxis of head and neck cancer memory T cells. Mol Ther Methods Clin Dev 2021;21:133-43. DOI PubMed PMC
+
80. Ma SR, Deng WW, Liu JF, et al. Blockade of adenosine A2A receptor enhances CD8 T cells response and decreases regulatory T
cells in head and neck squamous cell carcinoma. Mol Cancer 2017;16:99. DOI PubMed PMC
81. Ohta A, Ohta A, Madasu M, et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular
1
adenosine-rich microenvironments . J Immunol 2009;183:5487-93. DOI PubMed
82. Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol 2020;20:739-55. DOI PubMed
83. Sidders B, Zhang P, Goodwin K, et al. Adenosine signaling is prognostic for cancer outcome and has predictive utility for
immunotherapeutic response. Clin Cancer Res 2020;26:2176-87. DOI
84. Fong L, Hotson A, Powderly JD, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell
cancer. Cancer Discov 2020;10:40-53. DOI PubMed PMC
85. Bai Y, Zhang X, Zheng J, Liu Z, Yang Z, Zhang X. Overcoming high level adenosine-mediated immunosuppression by DZD2269, a
potent and selective A2aR antagonist. J Exp Clin Cancer Res 2022;41:302. DOI PubMed PMC
86. Buisseret L, Rottey S, De Bono JS, et al. Phase 1 trial of the adenosine A receptor antagonist inupadenant (EOS-850): update on
2A
tolerability, and antitumor activity potentially associated with the expression of the A receptor within the tumor. J Clin Oncol
2A
2021;39:2562. DOI
87. Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces
anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol 2021;14:200. DOI PubMed PMC
88. Powderly J, Bendell J, Carneiro B, et al. 1073TiP A phase I, first-in-human, multicenter, open-label, dose-escalation study of
IPH5201 as monotherapy or in combination with durvalumab ± oleclumab in advanced solid tumours. Ann Oncol 2020;31:S728-9.
DOI
89. Pharma I. IPH5201 and durvalumab in patients with resectable non-small cell lung cancer (MATISSE). Available from: https://
clinicaltrials.gov/study/NCT05742607. [Last accessed on 30 Aug 2023].
90. Paturel C, Anceriz N, Eyles J, et al. 190P Combination of IPH5201, a blocking antibody targeting the CD39 immunosuppressive
pathway, with durvalumab and chemotherapies: preclinical rationale. Immuno-Oncol Technol 2022;16:100302. DOI
91. Wainberg Z, Kang YK, Lee KW, et al. Abstract CT015: safety and efficacy of TTX-030, an anti-CD39 antibody, in combination with
chemoimmunotherapy for the first line treatment of locally advanced or metastatic gastric/GEJ cancer. Cancer Res 2022;82:CT015.
DOI
92. Bendell J, LoRusso P, Overman M, et al. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody,
alone or in combination with durvalumab in patients with advanced solid tumors. Cancer Immunol Immunother 2023;72:2443-58.
DOI PubMed PMC
93. Herbst RS, Majem M, Barlesi F, et al. COAST: an open-label, phase II, Multidrug platform study of durvalumab alone or in
combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J Clin Oncol
2022;40:3383-93. DOI PubMed
94. Yu W, Sun J, Wang X, et al. Boosting cancer immunotherapy via the convenient A2AR inhibition using a tunable nanocatalyst with
light-enhanced activity. Adv Mater 2022;34:2106967. DOI
95. Wu L, Xie W, Li Y, et al. Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating
innate and adaptive immunity system. Adv Sci 2022;9:2105376. DOI PubMed PMC
96. Mao C, Yeh S, Fu J, et al. Delivery of an ectonucleotidase inhibitor with ROS-responsive nanoparticles overcomes adenosine-
mediated cancer immunosuppression. Sci Transl Med 2022;14:eabh1261. DOI PubMed PMC
+
97. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD metabolism and its roles in cellular processes during ageing. Nat Rev Mol
Cell Biol 2021;22:119-41. DOI PubMed PMC
+
98. Xie N, Zhang L, Gao W, et al. NAD metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target
Ther 2020;5:227. DOI PubMed PMC
99. Dwivedi S, Rendón-Huerta EP, Ortiz-Navarrete V, Montaño LF. CD38 and regulation of the immune response cells in cancer. J
Oncol 2021;2021:6630295. DOI PubMed PMC
+
100. Navas LE, Carnero A. NAD metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021;6:2. DOI
PubMed PMC
101. Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD metabolism in cancer therapeutics. Front Oncol 2018;8:622. DOI PubMed
PMC
102. Liu HY, Wang FH, Liang JM, et al. Targeting NAD metabolism regulates extracellular adenosine levels to improve the cytotoxicity
of CD8+ effector T cells in the tumor microenvironment of gastric cancer. J Cancer Res Clin Oncol 2023;149:2743-56. DOI
PubMed PMC
+
103. Wang Y, Wang F, Wang L, et al. NAD supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT
transcription in tumor-infiltrated T cells. Cell Rep 2021;36:109516. DOI PubMed