Page 33 - Read Online
P. 33

Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60                                         Page 635

               77.       Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A
                    2006;103:13132-7.  DOI  PubMed  PMC
               78.       Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A  adenosine receptor gene deletion or synthetic A  antagonist liberate
                                                           2A
                                                                                            2A
                                 +
                    tumor-reactive CD8  T cells from tumor-induced immunosuppression. J Immunol 2018;201:782-91.  DOI  PubMed  PMC
               79.       Newton HS, Chimote AA, Arnold MJ, Wise-Draper TM, Conforti L. Targeted knockdown of the adenosine A  receptor by lipid NPs
                                                                                           2A
                    rescues the chemotaxis of head and neck cancer memory T cells. Mol Ther Methods Clin Dev 2021;21:133-43.  DOI  PubMed  PMC
                                                                            +
               80.       Ma SR, Deng WW, Liu JF, et al. Blockade of adenosine A2A receptor enhances CD8  T cells response and decreases regulatory T
                    cells in head and neck squamous cell carcinoma. Mol Cancer 2017;16:99.  DOI  PubMed  PMC
               81.       Ohta A, Ohta A, Madasu M, et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular
                                          1
                    adenosine-rich microenvironments . J Immunol 2009;183:5487-93.  DOI  PubMed
               82.       Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol 2020;20:739-55.  DOI  PubMed
               83.       Sidders B, Zhang P, Goodwin K, et al. Adenosine signaling is prognostic for cancer outcome and has predictive utility for
                    immunotherapeutic response. Clin Cancer Res 2020;26:2176-87.  DOI
               84.       Fong L, Hotson A, Powderly JD, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell
                    cancer. Cancer Discov 2020;10:40-53.  DOI  PubMed  PMC
               85.       Bai Y, Zhang X, Zheng J, Liu Z, Yang Z, Zhang X. Overcoming high level adenosine-mediated immunosuppression by DZD2269, a
                    potent and selective A2aR antagonist. J Exp Clin Cancer Res 2022;41:302.  DOI  PubMed  PMC
               86.       Buisseret L, Rottey S, De Bono JS, et al. Phase 1 trial of the adenosine A  receptor antagonist inupadenant (EOS-850): update on
                                                                    2A
                    tolerability, and antitumor activity potentially associated with the expression of the A  receptor within the tumor. J Clin Oncol
                                                                             2A
                    2021;39:2562.  DOI
               87.       Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces
                    anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol 2021;14:200.  DOI  PubMed  PMC
               88.       Powderly J, Bendell J, Carneiro B, et al. 1073TiP A phase I, first-in-human, multicenter, open-label, dose-escalation study of
                    IPH5201 as monotherapy or in combination with durvalumab ± oleclumab in advanced solid tumours. Ann Oncol 2020;31:S728-9.
                    DOI
               89.       Pharma I. IPH5201 and durvalumab in patients with resectable non-small cell lung cancer (MATISSE). Available from: https://
                    clinicaltrials.gov/study/NCT05742607. [Last accessed on 30 Aug 2023].
               90.       Paturel C, Anceriz N, Eyles J, et al. 190P Combination of IPH5201, a blocking antibody targeting the CD39 immunosuppressive
                    pathway, with durvalumab and chemotherapies: preclinical rationale. Immuno-Oncol Technol 2022;16:100302.  DOI
               91.       Wainberg Z, Kang YK, Lee KW, et al. Abstract CT015: safety and efficacy of TTX-030, an anti-CD39 antibody, in combination with
                    chemoimmunotherapy for the first line treatment of locally advanced or metastatic gastric/GEJ cancer. Cancer Res 2022;82:CT015.
                    DOI
               92.       Bendell J, LoRusso P, Overman M, et al. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody,
                    alone or in combination with durvalumab in patients with advanced solid tumors. Cancer Immunol Immunother 2023;72:2443-58.
                    DOI  PubMed  PMC
               93.       Herbst RS, Majem M, Barlesi F, et al. COAST: an open-label, phase II, Multidrug platform study of durvalumab alone or in
                    combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J Clin Oncol
                    2022;40:3383-93.  DOI  PubMed
               94.       Yu W, Sun J, Wang X, et al. Boosting cancer immunotherapy via the convenient A2AR inhibition using a tunable nanocatalyst with
                    light-enhanced activity. Adv Mater 2022;34:2106967.  DOI
               95.       Wu L, Xie W, Li Y, et al. Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating
                    innate and adaptive immunity system. Adv Sci 2022;9:2105376.  DOI  PubMed  PMC
               96.       Mao C, Yeh S, Fu J, et al. Delivery of an ectonucleotidase inhibitor with ROS-responsive nanoparticles overcomes adenosine-
                    mediated cancer immunosuppression. Sci Transl Med 2022;14:eabh1261.  DOI  PubMed  PMC
                                                        +
               97.       Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD  metabolism and its roles in cellular processes during ageing. Nat Rev Mol
                    Cell Biol 2021;22:119-41.  DOI  PubMed  PMC
                                            +
               98.       Xie N, Zhang L, Gao W, et al. NAD  metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target
                    Ther 2020;5:227.  DOI  PubMed  PMC
               99.       Dwivedi S, Rendón-Huerta EP, Ortiz-Navarrete V, Montaño LF. CD38 and regulation of the immune response cells in cancer. J
                    Oncol 2021;2021:6630295.  DOI  PubMed  PMC
                                      +
               100.      Navas LE, Carnero A. NAD  metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021;6:2.  DOI
                    PubMed  PMC
               101.      Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD metabolism in cancer therapeutics. Front Oncol 2018;8:622.  DOI  PubMed
                    PMC
               102.      Liu HY, Wang FH, Liang JM, et al. Targeting NAD metabolism regulates extracellular adenosine levels to improve the cytotoxicity
                    of CD8+ effector T cells in the tumor microenvironment of gastric cancer. J Cancer Res Clin Oncol 2023;149:2743-56.  DOI
                    PubMed  PMC
                                             +
               103.      Wang Y, Wang F, Wang L, et al. NAD  supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT
                    transcription in tumor-infiltrated T cells. Cell Rep 2021;36:109516.  DOI  PubMed
   28   29   30   31   32   33   34   35   36   37   38