Page 35 - Read Online
P. 35

Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60                                         Page 637

               134.      Kim RH, Coates JM, Bowles TL, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-
                    independent apoptosis. Cancer Res 2009;69:700-8.  DOI  PubMed  PMC
               135.      Kremer JC, Prudner BC, Lange SES, et al. Arginine deprivation inhibits the warburg effect and upregulates glutamine anaplerosis and
                    serine biosynthesis in ASS1-Deficient cancers. Cell Rep 2017;18:991-1004.  DOI  PubMed  PMC
               136.      Wang W, Zou W. Amino acids and their transporters in T Cell immunity and cancer therapy. Mol Cell 2020;80:384-95.  DOI
                    PubMed  PMC
               137.      Crump NT, Hadjinicolaou AV, Xia M, et al. Chromatin accessibility governs the differential response of cancer and T cells to
                    arginine starvation. Cell Rep 2021;35:109101.  DOI  PubMed  PMC
               138.      Gannon PO, Godin-Ethier J, Hassler M, et al. Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human
                    prostate cancer. PLoS One 2010;5:e12107.  DOI  PubMed  PMC
               139.      Tate DJ Jr, Vonderhaar DJ, Caldas YA, et al. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of
                    renal cell carcinoma. J Hematol Oncol 2008;1:14.  DOI  PubMed  PMC
               140.      Porembska Z, Luboiński G, Chrzanowska A, Mielczarek M, Magnuska J, Barańczyk-Kuźma A. Arginase in patients with breast
                    cancer. Clin Chim Acta 2003;328:105-11.  DOI  PubMed
               141.      Chen C, Jiang X, Zhao Z. Inhibition or promotion, the potential role of arginine metabolism in immunotherapy for colorectal cancer.
                    All Life 2023;16:2163306.  DOI
               142.      Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits
                    T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004;64:5839-49.  DOI
                                                                                      +
               143.      Norian LA, Rodriguez PC, O’Mara LA, et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8  T cell function via  -arginine
                                                                                                   L
                    metabolism. Cancer Res 2009;69:3086-94.  DOI  PubMed  PMC
               144.      Ino Y, Yamazaki-Itoh R, Oguro S, et al. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts
                    poor outcome in patients with pancreatic cancer. PLoS One 2013;8:e55146.  DOI  PubMed  PMC
               145.      Sippel TR, White J, Nag K, et al. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular
                    immune function by targeting arginase I. Clin Cancer Res 2011;17:6992-7002.  DOI
               146.      Ren W, Zhang X, Li W, et al. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were
                    mainly immature and monocytic Myeloid-derived suppressor cells. Sci Rep 2020;10:8056.  DOI  PubMed  PMC
               147.      Lowe MM, Boothby I, Clancy S, et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight
                    2019;4:129756.  DOI  PubMed  PMC
               148.      Gunji Y, Hori S, Aoe T, et al. High frequency of cancer patients with abnormal assembly of the T cell receptor-CD3 complex in
                    peripheral blood T lymphocytes. Jpn J Cancer Res 1994;85:1189-92.  DOI  PubMed  PMC
               149.      Zea AH, Rodriguez PC, Culotta KS, et al.  -Arginine modulates CD3ζ expression and T cell function in activated human T
                                                  L
                    lymphocytes. Cell Immunol 2004;232:21-31.  DOI  PubMed
               150.      Sosnowska A, Chlebowska-Tuz J, Matryba P, et al. Inhibition of arginase modulates T-cell response in the tumor microenvironment
                    of lung carcinoma. Oncoimmunology 2021;10:1956143.  DOI  PubMed  PMC
               151.      Rodriguez  PC,  Quiceno  DG,  Ochoa  AC.  L-arginine  availability  regulates  T-lymphocyte  cell-cycle  progression.  Blood
                    2007;109:1568-73.  DOI  PubMed  PMC
               152.      Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell
                    2016;167:829-42.e13.  DOI  PubMed  PMC
               153.      Czystowska-Kuzmicz M, Sosnowska A, Nowis D, et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses
                    and promote tumor growth in ovarian carcinoma. Nat Commun 2019;10:3000.  DOI  PubMed  PMC
               154.      Munder M, Engelhardt M, Knies D, et al. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.
                    PLoS One 2013;8:e63521.  DOI  PubMed  PMC
               155.      Mussai F, Wheat R, Sarrou E, et al. Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. Int J Cancer
                    2019;145:2201-8.  DOI  PubMed  PMC
               156.      Aaboe Jørgensen M, Ugel S, Linder Hübbe M, et al. Arginase 1-based immune modulatory vaccines induce anticancer immunity and
                    synergize with anti-PD-1 checkpoint blockade. Cancer Immunol Res 2021;9:1316-26.  DOI  PubMed
               157.      Satoh Y, Kotani H, Iida Y, Taniura T, Notsu Y, Harada M. Supplementation of l-arginine boosts the therapeutic efficacy of anticancer
                    chemoimmunotherapy. Cancer Sci 2020;111:2248-58.  DOI  PubMed  PMC
               158.      He X, Lin H, Yuan L, Li B. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against
                    osteosarcoma in immunocompetent mice. Cancer Biol Ther 2017;18:94-100.  DOI  PubMed  PMC
               159.      Canale FP, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature
                    2021;598:662-6.  DOI
               160.      Grzybowski MM, Stańczak PS, Pomper P, et al. OATD-02 validates the benefits of pharmacological inhibition of arginase 1 and 2 in
                    cancer. Cancers 2022;14:3967.  DOI  PubMed  PMC
               161.      Borek B, Nowicka J, Gzik A, et al. Arginase 1/2 inhibitor OATD-02: From discovery to first-in-man setup in cancer immunotherapy.
                    Mol Cancer Ther 2023;22:807-17.  DOI
               162.      Pilanc P, Wojnicki K, Roura AJ, et al. A novel oral arginase 1/2 inhibitor enhances the antitumor effect of PD-1 inhibition in murine
                    experimental gliomas by altering the immunosuppressive environment. Front Oncol 2021;11:703465.  DOI  PubMed  PMC
               163.      Naing A, Bauer T, Papadopoulos K, et al. Phase I study of the arginase inhibitor INCB001158 (1158) alone and in combination with
   30   31   32   33   34   35   36   37   38   39   40