Page 30 - Read Online
P. 30
Page 632 Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60
Visualization: Laubach K
Supervision: Turan T, Mathew R, Engelhardt J, Samayoa J
Availability of data and materials
Not applicable.
Financial support and sponsorship
This article was funded by AbbVie, Inc.
Conflicts of interest
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, and Samayoa J are employees of AbbVie. The
financial support for this article was provided by AbbVie.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64. DOI PubMed PMC
2. Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell 2018;33:547-62. DOI PubMed PMC
3. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015;125:3384-91. DOI
PubMed PMC
4. Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell
2021;184:5309-37. DOI PubMed PMC
5. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8:519-30. DOI PubMed PMC
6. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12:31-46. DOI PubMed
7. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab 2022;34:355-77. DOI PubMed
PMC
8. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer 2020;20:516-31. DOI PubMed PMC
9. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat
Med 2018;24:541-50. DOI PubMed PMC
10. Roy DG, Kaymak I, Williams KS, Ma EH, Jones RG. Immunometabolism in the tumor microenvironment. Annu Rev Cancer Biol
2021;5:137-59. DOI
11. Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition,
and Warburg phenomenon. Pharmacol Ther 2020;206:107451. DOI PubMed
12. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J
1999;343:281-99. DOI PubMed PMC
13. Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med 2013;34:337-49. DOI
PubMed
14. Sandforth L, Ammar N, Dinges LA, et al. Impact of the monocarboxylate transporter-1 (MCT1)-mediated cellular import of lactate
on stemness properties of human pancreatic adenocarcinoma cells †. Cancers 2020;12:581. DOI PubMed PMC
15. Longhitano L, Forte S, Orlando L, et al. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating
lactate metabolism and oxidative stress. Antioxidants 2022;11:275. DOI PubMed PMC
16. Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 2020;82:103-26. DOI
PubMed
+
17. Notarangelo G, Spinelli JB, Perez EM, et al. Oncometabolite -2HG alters T cell metabolism to impair CD8 T cell function. Science
D
2022;377:1519-29. DOI PubMed PMC
+
18. Hermans D, Gautam S, García-Cañaveras JC, et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8 T cell
stemness and antitumor immunity. Proc Natl Acad Sci U S A 2020;117:6047-55. DOI PubMed PMC