Page 30 - Read Online
P. 30

Page 632                                         Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60

               Visualization: Laubach K
               Supervision: Turan T, Mathew R, Engelhardt J, Samayoa J

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               This article was funded by AbbVie, Inc.


               Conflicts of interest
               Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, and Samayoa J are employees of AbbVie. The
               financial support for this article was provided by AbbVie.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.  DOI  PubMed  PMC
               2.       Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell 2018;33:547-62.  DOI  PubMed  PMC
               3.       Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015;125:3384-91.  DOI
                    PubMed  PMC
               4.       Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell
                    2021;184:5309-37.  DOI  PubMed  PMC
               5.       Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8:519-30.  DOI  PubMed  PMC
               6.       Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12:31-46.  DOI  PubMed
               7.       Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab 2022;34:355-77.  DOI  PubMed
                    PMC
               8.       Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer 2020;20:516-31.  DOI  PubMed  PMC
               9.       Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat
                    Med 2018;24:541-50.  DOI  PubMed  PMC
               10.       Roy DG, Kaymak I, Williams KS, Ma EH, Jones RG. Immunometabolism in the tumor microenvironment. Annu Rev Cancer Biol
                    2021;5:137-59.  DOI
               11.       Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition,
                    and Warburg phenomenon. Pharmacol Ther 2020;206:107451.  DOI  PubMed
               12.       Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J
                    1999;343:281-99.  DOI  PubMed  PMC
               13.       Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med 2013;34:337-49.  DOI
                    PubMed
               14.       Sandforth L, Ammar N, Dinges LA, et al. Impact of the monocarboxylate transporter-1 (MCT1)-mediated cellular import of lactate
                    on stemness properties of human pancreatic adenocarcinoma cells †. Cancers 2020;12:581.  DOI  PubMed  PMC
               15.       Longhitano L, Forte S, Orlando L, et al. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating
                    lactate metabolism and oxidative stress. Antioxidants 2022;11:275.  DOI  PubMed  PMC
               16.       Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 2020;82:103-26.  DOI
                    PubMed
                                                                                          +
               17.       Notarangelo G, Spinelli JB, Perez EM, et al. Oncometabolite  -2HG alters T cell metabolism to impair CD8  T cell function. Science
                                                            D
                    2022;377:1519-29.  DOI  PubMed  PMC
                                                                                                     +
               18.       Hermans D, Gautam S, García-Cañaveras JC, et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8  T cell
                    stemness and antitumor immunity. Proc Natl Acad Sci U S A 2020;117:6047-55.  DOI  PubMed  PMC
   25   26   27   28   29   30   31   32   33   34   35