Page 32 - Read Online
P. 32

Page 634                                         Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60

               49.       Campos-Contreras ADR, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in the hallmarks of cancer. Cells 2020;9:1612.
                    DOI  PubMed  PMC
               50.       Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev
                    2017;276:121-44.  DOI  PubMed  PMC
               51.       Ferretti E, Horenstein AL, Canzonetta C, Costa F, Morandi F. Canonical and non-canonical adenosinergic pathways. Immunol Lett
                    2019;205:25-30.  DOI  PubMed
               52.       Allard B, Allard D, Buisseret L, Stagg J. Publisher correction: the adenosine pathway in immuno-oncology. Nat Rev Clin Oncol
                    2020;17:650.  DOI  PubMed
               53.       Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2017;36:293-303.  DOI  PubMed
                    PMC
               54.       Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo
                    imaging with plasma membrane luciferase. PLoS One 2008;3:e2599.  DOI  PubMed  PMC
               55.       Mora-García ML, Ávila-Ibarra LR, García-Rocha R, et al. Cervical cancer cells suppress effector functions of cytotoxic T cells
                    through the adenosinergic pathway. Cell Immunol 2017;320:46-55.  DOI
               56.       Sundström P, Stenstad H, Langenes V, et al. Regulatory T cells from colon cancer patients inhibit effector T-cell migration through
                    an adenosine-dependent mechanism. Cancer Immunol Res 2016;4:183-93.  DOI  PubMed
                                                                            +
               57.       Shi L, Feng M, Du S, et al. Adenosine generated by regulatory T Cells induces CD8  T cell exhaustion in gastric cancer through
                    A2aR pathway. Biomed Res Int 2019;2019:4093214.  DOI  PubMed  PMC
               58.       Maj T, Wang W, Crespo J, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade
                    resistance in tumor. Nat Immunol 2017;18:1332-41.  DOI  PubMed  PMC
               59.       Giatromanolaki A, Kouroupi M, Pouliliou S, et al. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates
                    to hypoxia and immunosuppressive pathways. Life Sci 2020;259:118389.  DOI
               60.       Vignali PDA, DePeaux K, Watson MJ, et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit
                    antitumor immunity. Nat Immunol 2023;24:267-79.  DOI  PubMed  PMC
                                                                                                         +
               61.       Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4
                        +    +
                    CD25  FoxP3  regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 2012;3:190.
                    DOI  PubMed  PMC
               62.       Torres-Pineda DB, Mora-García ML, García-Rocha R, et al. Adenosine augments the production of IL-10 in cervical cancer cells
                    through interaction with the A  adenosine receptor, resulting in protection against the activity of cytotoxic T cells. Cytokine
                                         2B
                    2020;130:155082.  DOI  PubMed
               63.       King RJ, Shukla SK, He C, et al. CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer
                    pathogenesis. Oncogene 2022;41:971-82.  DOI  PubMed  PMC
               64.       Ludwig N, Yerneni SS, Azambuja JH, et al. Tumor-derived exosomes promote angiogenesis via adenosine A  receptor signaling.
                                                                                            2B
                    Angiogenesis 2020;23:599-610.  DOI  PubMed  PMC
               65.       Ploeg EM, Ke X, Britsch I, et al. Bispecific antibody CD73xEpCAM selectively inhibits the adenosine-mediated immunosuppressive
                    activity of carcinoma-derived extracellular vesicles. Cancer Lett 2021;521:109-18.  DOI
               66.       Morandi F, Marimpietri D, Horenstein AL, Corrias MV, Malavasi F. Microvesicles expressing adenosinergic ectoenzymes and their
                    potential role in modulating bone marrow infiltration by neuroblastoma cells. Oncoimmunology 2019;8:e1574198.  DOI  PubMed
                    PMC
               67.       Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through
                    adenosine production. J Immunol 2011;187:676-83.  DOI  PubMed
                                                                                       +
               68.       Chimote AA, Balajthy A, Arnold MJ, et al. A defect in KCa3.1 channel activity limits the ability of CD8  T cells from cancer patients
                    to infiltrate an adenosine-rich microenvironment. Sci Signal 2018;11:eaaq1616.  DOI  PubMed  PMC
               69.       Chimote AA, Hajdu P, Kucher V, et al. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of
                    human T cells. J Immunol 2013;191:6273-80.  DOI  PubMed  PMC
               70.       Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol
                    2012;12:532-47.  DOI  PubMed  PMC
                                                                   +              2+
               71.       Newton HS, Gawali VS, Chimote AA, et al. PD1 blockade enhances K  channel activity, Ca  signaling, and migratory ability in
                    cytotoxic T lymphocytes of patients with head and neck cancer. J Immunother Cancer 2020;8:e000844.  DOI  PubMed  PMC
               72.       Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates
                    immune suppression. J Exp Med 2007;204:1257-65.  DOI  PubMed  PMC
               73.       Mandapathil M, Szczepanski MJ, Szajnik M, et al. Increased ectonucleotidase expression and activity in regulatory T cells of patients
                    with head and neck cancer. Clin Cancer Res 2009;15:6348-57.  DOI  PubMed  PMC
                                                                                  +
               74.       Koyas A, Tucer S, Kayhan M, Savas AC, Akdemir I, Cekic C. Interleukin-7 protects CD8  T cells from adenosine-mediated
                    immunosuppression. Sci Signal 2021;14:eabb1269.  DOI  PubMed
                                                                     +
               75.       Cekic C, Linden J. Adenosine A  receptors intrinsically regulate CD8  T cells in the tumor microenvironment. Cancer Res
                                           2A
                    2014;74:7239-49.  DOI  PubMed  PMC
               76.       Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-
                    mediated inhibition of T-cell activation and expansion. Blood 1997;90:1600-10.  DOI  PubMed
   27   28   29   30   31   32   33   34   35   36   37