Page 36 - Read Online
P. 36
Page 638 Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60
pembrolizumab (PEM) in patients (Pts) with advanced/metastatic (adv/met) solid tumours. Ann Oncol 2019;30:v160. DOI
164. Koyama T, Shimizu T, Matsubara N, et al. MO10-6 Phase 1 study of retifanlimab (anti-PD-1) and INCB001158 (arginase inhibitor),
alone or in combination, in solid tumors. Ann Oncol 2021;32:S302. DOI
165. Papadopoulos KP, Tsai FYC, Bauer TM, et al. CX-1158-101: a first-in-human phase 1 study of CB-1158, a small molecule inhibitor
of arginase, as monotherapy and in combination with an anti-PD-1 checkpoint inhibitor in patients (pts) with solid tumors. J Clin
Oncol 2017;35:3005. DOI
166. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 2016;16:749.
DOI PubMed
167. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010;35:427-33. DOI
PubMed PMC
168. Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
Nature 2013;496:101-5. DOI PubMed PMC
169. Fan J, Kamphorst JJ, Mathew R, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian
cells in both normoxia and hypoxia. Mol Syst Biol 2013;9:712. DOI PubMed PMC
170. Durán RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012;47:349-58. DOI
171. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature
2011;481:380-4. DOI PubMed PMC
172. Yoo HC, Park SJ, Nam M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in
cancer cells. Cell Metab 2020;31:267-83.e12. DOI
173. Ishak Gabra MB, Yang Y, Li H, et al. Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to
inhibit melanoma tumour growth. Nat Commun 2020;11:3326. DOI PubMed PMC
174. Nakaya M, Xiao Y, Zhou X, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine
uptake and mTORC1 kinase activation. Immunity 2014;40:692-705. DOI PubMed PMC
175. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the
metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013;14:500-8. DOI PubMed PMC
176. Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T
lymphocyte activation. J Immunol 2010;185:1037-44. DOI PubMed PMC
177. Presnell SR, Spear HK, Durham J, Riddle T, Applegate A, Lutz CT. Correction: differential fuel requirements of human NK cells and
human CD8 T cells: glutamine regulates glucose uptake in strongly activated CD8 T cells. Immunohorizons 2020;4:454. DOI
PubMed
178. Edwards DN, Ngwa VM, Raybuck AL, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T
lymphocyte activity in triple-negative breast cancer. J Clin Invest 2021;131:140100. DOI PubMed PMC
+
179. Wang W, Guo MN, Li N, Pang DQ, Wu JH. Glutamine deprivation impairs function of infiltrating CD8 T cells in hepatocellular
carcinoma by inducing mitochondrial damage and apoptosis. World J Gastrointest Oncol 2022;14:1124-40. DOI PubMed PMC
+
180. Nabe S, Yamada T, Suzuki J, et al. Reinforce the antitumor activity of CD8 T cells via glutamine restriction. Cancer Sci
2018;109:3737-50. DOI PubMed PMC
181. Fu Q, Xu L, Wang Y, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with
immune evasion. Eur Urol 2019;75:752-63. DOI
182. Ma G, Liang Y, Chen Y, et al. Glutamine deprivation induces PD-L1 expression via activation of EGFR/ERK/c-Jun signaling in renal
cancer. Mol Cancer Res 2020;18:324-39. DOI PubMed
183. Byun JK, Park M, Lee S, et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor
immunity. Mol Cell 2020;80:592-606.e8. DOI PubMed
184. Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune
evasion. Science 2019;366:1013-21. DOI PubMed PMC
185. Pons-Tostivint E, Lugat A, Fontenau JF, Denis MG, Bennouna J. STK11/LKB1 modulation of the immune response in lung cancer:
from biology to therapeutic impact. Cells 2021;10:3129. DOI PubMed PMC
186. Aggarwal C, Thompson JC, Chien AL, et al. Baseline plasma tumor mutation burden predicts response to pembrolizumab-based
therapy in patients with metastatic non-small cell lung cancer. Clin Cancer Res 2020;26:2354-61. DOI PubMed PMC
187. Biton J, Mansuet-Lupo A, Pécuchet N, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to
anti-PD-1 in lung adenocarcinoma. Clin Cancer Res 2018;24:5710-23. DOI PubMed
188. Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung
adenocarcinoma. Cancer Discov 2018;8:822-35. DOI PubMed PMC
189. Best SA, Gubser PM, Sethumadhavan S, et al. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung
cancer. Cell Metab 2022;34:874-87.e6. DOI PubMed
190. Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat
Rev Cancer 2019;19:625-37. DOI
191. Neidhart M. DNA methylation and complex human disease. Academic Press; 2015. p. 429-39. Available from: https://www.
sciencedirect.com/book/9780124201941/dna-methylation-and-complex-human-disease. [Last accessed on 30 Aug 2023].
192. Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: a metabolite critical to the regulation of autophagy. Cell Prolif