Page 38 - Read Online
P. 38

Page 640                                         Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60

                    DOI
               223.      Lagace TA, Curtis DE, Garuti R, et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of
                    parabiotic mice. J Clin Invest 2006;116:2995-3005.  DOI  PubMed  PMC
               224.      Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein
                    receptor degradation: evidence for an intracellular route. J Biol Chem 2009;284:28856-64.  DOI  PubMed  PMC
               225.      Gu Y, Lin X, Dong Y, et al. PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity. J Exp Clin Cancer
                    Res 2023;42:2.  DOI  PubMed  PMC
                                                    +
               226.      Yuan J, Cai T, Zheng X, et al. Potentiating CD8  T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR
                    recycling and signaling. Protein Cell 2021;12:240-60.  DOI  PubMed  PMC
               227.      Liu X, Bao X, Hu M, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020;588:693-8.  DOI
                    PubMed  PMC
               228.      Ni W, Mo H, Liu Y, et al. Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA
                    SNHG29-mediated YAP activation. Mol Ther 2021;29:2995-3010.  DOI  PubMed  PMC
               229.      Lim WJ, Lee M, Oh Y, et al. Statins decrease programmed death-ligand 1 (PD-L1) by Inhibiting AKT and β-Catenin Signaling. Cells
                    2021;10:2488.  DOI  PubMed  PMC
               230.      Choe EJ, Lee CH, Bae JH, Park JM, Park SS, Baek MC. Atorvastatin enhances the efficacy of immune checkpoint therapy and
                    suppresses the cellular and extracellular vesicle PD-L1. Pharmaceutics 2022;14:1660.  DOI  PubMed  PMC
               231.      Wang Q, Cao Y, Shen L, et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv 2022;8:eabq4722.
                    DOI  PubMed  PMC
               232.      Tatsuguchi T, Uruno T, Sugiura Y, et al. Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector
                    T cells. Int Immunol 2022;34:277-89.  DOI  PubMed  PMC
               233.      Zech T, Ejsing CS, Gaus K, et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO
                    J 2009;28:466-76.  DOI  PubMed  PMC
               234.      Liu X, Zhao Z, Sun X, et al. Blocking cholesterol metabolism with tumor-penetrable nanovesicles to improve photodynamic cancer
                    immunotherapy. Small Methods 2023;7:2200898.  DOI  PubMed
                                                                            +
               235.      Lee IK, Song H, Kim H, et al. RORα regulates cholesterol metabolism of CD8  T cells for anticancer immunity. Cancers
                    2020;12:1733.  DOI  PubMed  PMC
                                                                      +
               236.      Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8  T cells by modulating cholesterol metabolism. Nature
                    2016;531:651-5.  DOI  PubMed  PMC
               237.      You W, Ke J, Chen Y, et al. SQLE, a key enzyme in cholesterol metabolism, correlates with tumor immune infiltration and
                    immunotherapy outcome of pancreatic adenocarcinoma. Front Immunol 2022;13:864244.  DOI  PubMed  PMC
               238.      Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug
                    Discov 2008;7:489-503.  DOI  PubMed  PMC
               239.      Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism:
                    insights from transgenic mice. Prog Lipid Res 2010;49:186-99.  DOI  PubMed
               240.      Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013;13:227-32.
                    DOI  PubMed  PMC
               241.      Lou W, Gong C, Ye Z, et al. Lipid metabolic features of T cells in the tumor microenvironment. Lipids Health Dis 2022;21:94.  DOI
                    PubMed  PMC
               242.      Tomin T, Fritz K, Gindlhuber J, et al. Deletion of adipose triglyceride lipase links triacylglycerol accumulation to a more-aggressive
                    phenotype in A549 lung carcinoma cells. J Proteome Res 2018;17:1415-25.  DOI
               243.      Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer.
                    Cell Metab 2020;31:62-76.  DOI  PubMed
               244.      Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer
                    2014;14:754-62.  DOI  PubMed
               245.      Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor
                    growth. Nat Med 2011;17:1498-503.  DOI  PubMed  PMC
               246.      Wang YY, Attané C, Milhas D, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor
                    cells. JCI Insight 2017;2:e87489.  DOI  PubMed  PMC
               247.      Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell
                    Stem Cell 2016;19:23-37.  DOI  PubMed  PMC
               248.      Wen YA, Xing X, Harris JW, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in
                    colon cancer. Cell Death Dis 2017;8:e2593.  DOI  PubMed  PMC
               249.      Ringel AE, Drijvers JM, Baker GJ, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor
                    immunity. Cell 2020;183:1848-66.e26.  PubMed  PMC
                                                                                +
               250.      Zhang C, Yue C, Herrmann A, et al. STAT3 activation-induced fatty acid oxidation in CD8  T effector cells is critical for obesity-
                    promoted breast tumor growth. Cell Metab 2020;31:148-61.e5.  DOI  PubMed  PMC
               251.      Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting
                    lipolysis and fatty acid oxidation. Nat Commun 2015;6:6692.  DOI  PubMed  PMC
   33   34   35   36   37   38   39   40   41   42   43