Page 38 - Read Online
P. 38
Page 640 Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60
DOI
223. Lagace TA, Curtis DE, Garuti R, et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of
parabiotic mice. J Clin Invest 2006;116:2995-3005. DOI PubMed PMC
224. Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein
receptor degradation: evidence for an intracellular route. J Biol Chem 2009;284:28856-64. DOI PubMed PMC
225. Gu Y, Lin X, Dong Y, et al. PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity. J Exp Clin Cancer
Res 2023;42:2. DOI PubMed PMC
+
226. Yuan J, Cai T, Zheng X, et al. Potentiating CD8 T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR
recycling and signaling. Protein Cell 2021;12:240-60. DOI PubMed PMC
227. Liu X, Bao X, Hu M, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020;588:693-8. DOI
PubMed PMC
228. Ni W, Mo H, Liu Y, et al. Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA
SNHG29-mediated YAP activation. Mol Ther 2021;29:2995-3010. DOI PubMed PMC
229. Lim WJ, Lee M, Oh Y, et al. Statins decrease programmed death-ligand 1 (PD-L1) by Inhibiting AKT and β-Catenin Signaling. Cells
2021;10:2488. DOI PubMed PMC
230. Choe EJ, Lee CH, Bae JH, Park JM, Park SS, Baek MC. Atorvastatin enhances the efficacy of immune checkpoint therapy and
suppresses the cellular and extracellular vesicle PD-L1. Pharmaceutics 2022;14:1660. DOI PubMed PMC
231. Wang Q, Cao Y, Shen L, et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv 2022;8:eabq4722.
DOI PubMed PMC
232. Tatsuguchi T, Uruno T, Sugiura Y, et al. Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector
T cells. Int Immunol 2022;34:277-89. DOI PubMed PMC
233. Zech T, Ejsing CS, Gaus K, et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO
J 2009;28:466-76. DOI PubMed PMC
234. Liu X, Zhao Z, Sun X, et al. Blocking cholesterol metabolism with tumor-penetrable nanovesicles to improve photodynamic cancer
immunotherapy. Small Methods 2023;7:2200898. DOI PubMed
+
235. Lee IK, Song H, Kim H, et al. RORα regulates cholesterol metabolism of CD8 T cells for anticancer immunity. Cancers
2020;12:1733. DOI PubMed PMC
+
236. Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8 T cells by modulating cholesterol metabolism. Nature
2016;531:651-5. DOI PubMed PMC
237. You W, Ke J, Chen Y, et al. SQLE, a key enzyme in cholesterol metabolism, correlates with tumor immune infiltration and
immunotherapy outcome of pancreatic adenocarcinoma. Front Immunol 2022;13:864244. DOI PubMed PMC
238. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug
Discov 2008;7:489-503. DOI PubMed PMC
239. Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism:
insights from transgenic mice. Prog Lipid Res 2010;49:186-99. DOI PubMed
240. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013;13:227-32.
DOI PubMed PMC
241. Lou W, Gong C, Ye Z, et al. Lipid metabolic features of T cells in the tumor microenvironment. Lipids Health Dis 2022;21:94. DOI
PubMed PMC
242. Tomin T, Fritz K, Gindlhuber J, et al. Deletion of adipose triglyceride lipase links triacylglycerol accumulation to a more-aggressive
phenotype in A549 lung carcinoma cells. J Proteome Res 2018;17:1415-25. DOI
243. Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer.
Cell Metab 2020;31:62-76. DOI PubMed
244. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer
2014;14:754-62. DOI PubMed
245. Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor
growth. Nat Med 2011;17:1498-503. DOI PubMed PMC
246. Wang YY, Attané C, Milhas D, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor
cells. JCI Insight 2017;2:e87489. DOI PubMed PMC
247. Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell
Stem Cell 2016;19:23-37. DOI PubMed PMC
248. Wen YA, Xing X, Harris JW, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in
colon cancer. Cell Death Dis 2017;8:e2593. DOI PubMed PMC
249. Ringel AE, Drijvers JM, Baker GJ, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor
immunity. Cell 2020;183:1848-66.e26. PubMed PMC
+
250. Zhang C, Yue C, Herrmann A, et al. STAT3 activation-induced fatty acid oxidation in CD8 T effector cells is critical for obesity-
promoted breast tumor growth. Cell Metab 2020;31:148-61.e5. DOI PubMed PMC
251. Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting
lipolysis and fatty acid oxidation. Nat Commun 2015;6:6692. DOI PubMed PMC