Page 34 - Read Online
P. 34
Page 636 Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60
104. Gerner RR, Macheiner S, Reider S, et al. Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent
antileukemic activity. Leukemia 2020;34:1885-97. DOI
+
+
105. Aswad F, Kawamura H, Dennert G. High sensitivity of CD4 CD25 regulatory T cells to extracellular metabolites nicotinamide
adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 2005;175:3075-83. DOI PubMed
+ +
106. Hubert S, Rissiek B, Klages K, et al. Extracellular NAD shapes the Foxp3 regulatory T cell compartment through the ART2-P2X7
pathway. J Exp Med 2010;207:2561-8. DOI PubMed PMC
107. Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022;13:970553.
DOI PubMed PMC
108. Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des
2009;15:57-63. DOI PubMed PMC
109. Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and
pathology. Physiol Rev 2008;88:841-86. DOI PubMed
110. Philip M, Fairchild L, Sun L, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature
2017;545:452-6. DOI PubMed PMC
111. Manna A, Kellett T, Aulakh S, et al. Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells and Tregs, but restores
+
CD8 T-cell responses. Blood Adv 2020;4:2143-57. DOI PubMed PMC
112. Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F. CD38: a target for immunotherapeutic approaches in multiple
myeloma. Front Immunol 2018;9:2722. DOI PubMed PMC
113. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later.
Blood 2011;118:3470-8. DOI PubMed PMC
114. Chen L, Diao L, Yang Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1
blockade. Cancer Discov 2018;8:1156-75. DOI PubMed PMC
115. Konen JM, Fradette JJ, Gibbons DL. The good, the bad and the unknown of CD38 in the metabolic microenvironment and immune
cell functionality of solid tumors. Cells 2019;9:52. DOI PubMed PMC
+
116. Vaisitti T, Audrito V, Serra S, et al. NAD -metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic
leukemia model. FEBS Lett 2011;585:1514-20. DOI PubMed
117. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med
2015;373:1207-19. DOI
118. Moreau P, Dimopoulos MA, Yong K, et al. Isatuximab plus carfilzomib/dexamethasone versus carfilzomib/dexamethasone in
patients with relapsed/refractory multiple myeloma: IKEMA Phase III study design. Future Oncol 2020;16:4347-58. DOI
119. Raab MS, Engelhardt M, Blank A, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory
multiple myeloma: a first-in-human, multicentre, phase 1-2a trial. Lancet Haematol 2020;7:e381-94. DOI PubMed
120. Ugamraj HS, Dang K, Ouisse LH, et al. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-
enzyme activity. MAbs 2022;14:2095949. DOI PubMed PMC
121. Tarragó MG, Chini CCS, Kanamori KS, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by
+
reversing tissue NAD decline. Cell Metab 2018;27:1081-95.e10. DOI PubMed PMC
122. Lagu B, Wu X, Kulkarni S, et al. Orally bioavailable enzymatic inhibitor of CD38, MK-0159, protects against ischemia/reperfusion
injury in the murine heart. J Med Chem 2022;65:9418-46. DOI PubMed
123. Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting tryptophan catabolism in cancer immunotherapy era:
challenges and perspectives. Front Immunol 2022;13:807271. DOI PubMed PMC
124. Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine signaling and cancer metabolism. Cancers 2021;13:3541. DOI PubMed
PMC
125. Christiansen B, Wellendorph P, Bräuner-Osborne H. Known regulators of nitric oxide synthase and arginase are agonists at the
human G-protein-coupled receptor GPRC6A. Br J Pharmacol 2006;147:855-63. DOI PubMed PMC
126. Gilmour SK. Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 2007;224:249-56. DOI PubMed PMC
127. Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P. Polyamines metabolism and breast cancer: state of the art and
perspectives. Breast Cancer Res Treat 2014;148:233-48. DOI PubMed
128. Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: targeting polyamine metabolism to manage risk factors for colon
cancer. J Biol Chem 2018;293:18770-8. DOI PubMed PMC
129. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol 2013;11:118.
DOI PubMed PMC
130. Changou CA, Chen YR, Xing L, et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction,
nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci U S A 2014;111:14147-52. DOI PubMed PMC
131. Cheng CT, Qi Y, Wang YC, et al. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction.
Commun Biol 2018;1:178. DOI PubMed PMC
132. Qiu F, Chen YR, Liu X, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells.
Sci Signal 2014;7:ra31. DOI PubMed PMC
133. Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine
deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 2012;3:e342. DOI PubMed PMC