Page 34 - Read Online
P. 34

Page 636                                         Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60

               104.      Gerner RR, Macheiner S, Reider S, et al. Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent
                    antileukemic activity. Leukemia 2020;34:1885-97.  DOI
                                                             +
                                                                 +
               105.      Aswad F, Kawamura H, Dennert G. High sensitivity of CD4 CD25  regulatory T cells to extracellular metabolites nicotinamide
                    adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 2005;175:3075-83.  DOI  PubMed
                                                        +            +
               106.      Hubert S, Rissiek B, Klages K, et al. Extracellular NAD  shapes the Foxp3  regulatory T cell compartment through the ART2-P2X7
                    pathway. J Exp Med 2010;207:2561-8.  DOI  PubMed  PMC
               107.      Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022;13:970553.
                    DOI  PubMed  PMC
               108.      Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des
                    2009;15:57-63.  DOI  PubMed  PMC
               109.      Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and
                    pathology. Physiol Rev 2008;88:841-86.  DOI  PubMed
               110.      Philip M, Fairchild L, Sun L, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature
                    2017;545:452-6.  DOI  PubMed  PMC
               111.      Manna A, Kellett T, Aulakh S, et al. Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells and Tregs, but restores
                       +
                    CD8  T-cell responses. Blood Adv 2020;4:2143-57.  DOI  PubMed  PMC
               112.      Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F. CD38: a target for immunotherapeutic approaches in multiple
                    myeloma. Front Immunol 2018;9:2722.  DOI  PubMed  PMC
               113.      Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later.
                    Blood 2011;118:3470-8.  DOI  PubMed  PMC
               114.      Chen L, Diao L, Yang Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1
                    blockade. Cancer Discov 2018;8:1156-75.  DOI  PubMed  PMC
               115.      Konen JM, Fradette JJ, Gibbons DL. The good, the bad and the unknown of CD38 in the metabolic microenvironment and immune
                    cell functionality of solid tumors. Cells 2019;9:52.  DOI  PubMed  PMC
                                                 +
               116.      Vaisitti T, Audrito V, Serra S, et al. NAD -metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic
                    leukemia model. FEBS Lett 2011;585:1514-20.  DOI  PubMed
               117.      Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med
                    2015;373:1207-19.  DOI
               118.      Moreau P, Dimopoulos MA, Yong K, et al. Isatuximab plus carfilzomib/dexamethasone versus carfilzomib/dexamethasone in
                    patients with relapsed/refractory multiple myeloma: IKEMA Phase III study design. Future Oncol 2020;16:4347-58.  DOI
               119.      Raab MS, Engelhardt M, Blank A, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory
                    multiple myeloma: a first-in-human, multicentre, phase 1-2a trial. Lancet Haematol 2020;7:e381-94.  DOI  PubMed
               120.      Ugamraj HS, Dang K, Ouisse LH, et al. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-
                    enzyme activity. MAbs 2022;14:2095949.  DOI  PubMed  PMC
               121.      Tarragó MG, Chini CCS, Kanamori KS, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by
                                  +
                    reversing tissue NAD decline. Cell Metab 2018;27:1081-95.e10.  DOI  PubMed  PMC
               122.      Lagu B, Wu X, Kulkarni S, et al. Orally bioavailable enzymatic inhibitor of CD38, MK-0159, protects against ischemia/reperfusion
                    injury in the murine heart. J Med Chem 2022;65:9418-46.  DOI  PubMed
               123.      Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting tryptophan catabolism in cancer immunotherapy era:
                    challenges and perspectives. Front Immunol 2022;13:807271.  DOI  PubMed  PMC
               124.      Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine signaling and cancer metabolism. Cancers 2021;13:3541.  DOI  PubMed
                    PMC
               125.      Christiansen B, Wellendorph P, Bräuner-Osborne H. Known regulators of nitric oxide synthase and arginase are agonists at the
                    human G-protein-coupled receptor GPRC6A. Br J Pharmacol 2006;147:855-63.  DOI  PubMed  PMC
               126.      Gilmour SK. Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 2007;224:249-56.  DOI  PubMed  PMC
               127.      Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P. Polyamines metabolism and breast cancer: state of the art and
                    perspectives. Breast Cancer Res Treat 2014;148:233-48.  DOI  PubMed
               128.      Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: targeting polyamine metabolism to manage risk factors for colon
                    cancer. J Biol Chem 2018;293:18770-8.  DOI  PubMed  PMC
               129.      Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol 2013;11:118.
                    DOI  PubMed  PMC
               130.      Changou CA, Chen YR, Xing L, et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction,
                    nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci U S A 2014;111:14147-52.  DOI  PubMed  PMC
               131.      Cheng CT, Qi Y, Wang YC, et al. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction.
                    Commun Biol 2018;1:178.  DOI  PubMed  PMC
               132.      Qiu F, Chen YR, Liu X, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells.
                    Sci Signal 2014;7:ra31.  DOI  PubMed  PMC
               133.      Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine
                    deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 2012;3:e342.  DOI  PubMed  PMC
   29   30   31   32   33   34   35   36   37   38   39