Page 31 - Read Online
P. 31
Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60 Page 633
19. Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, et al. Restricting tumor lactic acid metabolism using dichloroacetate improves T
cell functions. BMC Cancer 2022;22:39. DOI PubMed PMC
20. Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol
2018;39:489-502. DOI PubMed
21. Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007;109:3812-9.
DOI PubMed
22. Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells.
Cell Metab 2016;24:657-71. DOI PubMed
23. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005;5:472-84. DOI PubMed
24. Ping W, Senyan H, Li G, Yan C, Long L. Increased lactate in gastric cancer tumor-infiltrating lymphocytes is related to impaired T
cell function due to miR-34a deregulated lactate dehydrogenase A. Cell Physiol Biochem 2018;49:828-36. DOI
25. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015;36:265-76. DOI PubMed
PMC
+
26. Kaymak I, Luda KM, Duimstra LR, et al. Carbon source availability drives nutrient utilization in CD8 T cells. Cell Metab
2022;34:1298-311.e6. DOI PubMed PMC
27. Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017;551:115-8. DOI
PubMed PMC
28. Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors. Cell 2017;171:358-71.e9. DOI PubMed PMC
29. Quinn WJ 3rd, Jiao J, TeSlaa T, et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep 2020;33:108500. DOI
PubMed PMC
30. Xia H, Wang W, Crespo J, et al. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and
affects tumor immunity. Sci Immunol 2017;2:eaan4631. DOI PubMed PMC
31. Elia I, Rowe JH, Johnson S, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate
+
signaling in CD8 T cells. Cell Metab 2022;34:1137-50.e6. DOI PubMed PMC
32. Angelin A, Gil-de-Gómez L, Dahiya S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate
environments. Cell Metab 2017;25:1282-93.e7. DOI PubMed PMC
33. Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature
2021;591:645-51. DOI PubMed PMC
34. Stone SC, Rossetti RAM, Alvarez KLF, et al. Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc
Biol 2019;105:1041-54. DOI
35. Kelderman S, Heemskerk B, van Tinteren H, et al. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in
metastatic melanoma. Cancer Immunol Immunother 2014;63:449-58. DOI PubMed
36. Nosrati A, Tsai KK, Goldinger SM, et al. Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a
prediction scale for response to PD-1 monotherapy. Br J Cancer 2017;116:1141-7. DOI PubMed PMC
37. Zhang Z, Li Y, Yan X, et al. Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer
patients treated with immune checkpoint inhibitors: a meta-analysis. Cancer Med 2019;8:1467-73. DOI PubMed PMC
38. Schouwenburg MG, Suijkerbuijk KPM, Koornstra RHT, et al. Switching to immune checkpoint inhibitors upon response to targeted
therapy; the road to long-term survival in advanced melanoma patients with highly elevated serum LDH? Cancer 2019;11:1940. DOI
PubMed PMC
39. Wang X, Zhang B, Chen X, et al. Lactate dehydrogenase and baseline markers associated with clinical outcomes of advanced
esophageal squamous cell carcinoma patients treated with camrelizumab (SHR-1210), a novel anti-PD-1 antibody. Thorac Cancer
2019;10:1395-401. DOI PubMed PMC
40. Yin TT, Huang MX, Wang F, et al. Lactate score predicts survival, immune cell infiltration and response to immunotherapy in breast
cancer. Front Genet 2022;13:943849. DOI PubMed PMC
41. Renner K, Bruss C, Schnell A, et al. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell
Rep 2019;29:135-50.e9. DOI
42. Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell
accumulation in tumor microenvironment. Proc Natl Acad Sci U S A 2020;117:20159-70. DOI PubMed PMC
43. Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor
microenvironments. Cancer Cell 2022;40:201-18.e9. DOI
44. Stransky N, Huber SM. Comment on Chen et al. Dual blockade of lactate/GPR81 and PD-1/PD-L1 pathways enhances the anti-
tumor effects of metformin. Biomolecules 2021, 11, 1373. Biomolecules 2022;12:573. DOI PubMed PMC
45. Feng Q, Liu Z, Yu X, et al. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat Commun
2022;13:4981. DOI PubMed PMC
46. Kaczmarek E, Koziak K, Sévigny J, et al. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol
Chem 1996;271:33116-22. DOI
47. Zimmermann H. 5'-nucleotidase: molecular structure and functional aspects. Biochem J 1992;285:345-65. DOI PubMed PMC
48. Horenstein AL, Chillemi A, Zaccarello G, et al. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel
adenosinergic loop in human T lymphocytes. Oncoimmunology 2013;2:e26246. DOI PubMed PMC