Page 37 - Read Online
P. 37
Laubach et al. Cancer Drug Resist 2023;6:611-41 https://dx.doi.org/10.20517/cdr.2023.60 Page 639
2020;53:e12891. DOI PubMed PMC
193. Froese DS, Fowler B, Baumgartner MR. Vitamin B , folate, and the methionine remethylation cycle - biochemistry, pathways, and
12
regulation. J Inherit Metab Dis 2019;42:673-85. DOI PubMed
194. Lückerath K, Lapa C, Albert C, et al. 11C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment
in multiple myeloma. Oncotarget 2015;6:8418-29. DOI PubMed PMC
195. Glaudemans AWJM, Enting RH, Heesters MAAM, et al. Value of C-methionine PET in imaging brain tumours and metastases.
11
Eur J Nucl Med Mol Imaging 2013;40:615-35. DOI
196. Wang Z, Yip LY, Lee JHJ, et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019;25:825-37. DOI
197. Zhao L, Su H, Liu X, et al. mTORC1-c-Myc pathway rewires methionine metabolism for HCC progression through suppressing
SIRT4 mediated ADP ribosylation of MAT2A. Cell Biosci 2022;12:183. DOI PubMed PMC
198. Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink.
Nat Chem Biol 2013;9:300-6. DOI PubMed PMC
199. Sinclair LV, Howden AJ, Brenes A, et al. Antigen receptor control of methionine metabolism in T cells. eLife 2019;8:e44210. DOI
PubMed PMC
200. Hung MH, Lee JS, Ma C, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun
2021;12:1455. DOI PubMed PMC
201. Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5'-
methylthioadenosine. IUBMB Life 2009;61:1132-42. DOI PubMed
6
202. Li T, Tan YT, Chen YX, et al. Methionine deficiency facilitates antitumour immunity by altering m A methylation of immune
checkpoint transcripts. Gut 2023;72:501-11. DOI PubMed PMC
203. Bian Y, Li W, Kremer DM, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature
2020;585:277-82. DOI PubMed PMC
+
204. Tripathi P, Kurtulus S, Wojciechowski S, et al. STAT5 is critical to maintain effector CD8 T cell responses. J Immunol
2010;185:2116-24. DOI PubMed PMC
205. Xu S, Chaudhary O, Rodríguez-Morales P, et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid
+
peroxidation and dysfunction in CD8 T cells in tumors. Immunity 2021;54:1561-77.e7. DOI PubMed PMC
+
206. Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8 T cell fatty acid catabolism within a metabolically challenging tumor
microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 2017;32:377-91.e9. DOI PubMed PMC
+
207. Ma X, Bi E, Lu Y, et al. Cholesterol Induces CD8 T cell exhaustion in the tumor microenvironment. Cell Metab 2019;30:143-56.e5.
DOI PubMed PMC
208. Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and
therapy: thematic review series: biology of lipid rafts. J Lipid Res 2020;61:611-35. DOI PubMed PMC
209. Ridker PM. LDL cholesterol: controversies and future therapeutic directions. Lancet 2014;384:607-17. DOI PubMed
210. Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb
Vasc Biol 2006;26:534-40. DOI
211. Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks.
Cell Death Dis 2020;11:105. DOI PubMed PMC
212. Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate
cancer aggressiveness. Cell Metab 2014;19:393-406. DOI PubMed PMC
213. Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA. High ACAT1 expression in estrogen receptor negative basal-like
breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 2010;122:661-70. DOI PubMed
214. Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol
2021;14:101043. DOI PubMed PMC
215. Dong F, Mo Z, Eid W, Courtney KC, Zha X. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through
suppressing mTORC1. PLoS One 2014;9:e113789. DOI PubMed PMC
216. Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth.
Cell Metab 2008;8:224-36. DOI PubMed PMC
217. Li J, Gu D, Lee SS, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene
2016;35:6378-88. DOI PubMed PMC
218. Thysell E, Surowiec I, Hörnberg E, et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased
levels of cholesterol. PLoS One 2010;5:e14175. DOI PubMed PMC
219. Lei K, Kurum A, Kaynak M, et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat
Biomed Eng 2021;5:1411-25. DOI PubMed PMC
220. Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2020;2:132-41.
DOI PubMed
221. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic
reticulum compartment. Proc Natl Acad Sci U S A 2005;102:2069-74. DOI PubMed PMC
222. Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like
repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282:18602-12.