Page 37 - Read Online
P. 37

Laubach et al. Cancer Drug Resist 2023;6:611-41  https://dx.doi.org/10.20517/cdr.2023.60                                         Page 639

                    2020;53:e12891.  DOI  PubMed  PMC
               193.      Froese DS, Fowler B, Baumgartner MR. Vitamin B , folate, and the methionine remethylation cycle - biochemistry, pathways, and
                                                      12
                    regulation. J Inherit Metab Dis 2019;42:673-85.  DOI  PubMed
               194.      Lückerath K, Lapa C, Albert C, et al. 11C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment
                    in multiple myeloma. Oncotarget 2015;6:8418-29.  DOI  PubMed  PMC
               195.      Glaudemans AWJM, Enting RH, Heesters MAAM, et al. Value of  C-methionine PET in imaging brain tumours and metastases.
                                                                11
                    Eur J Nucl Med Mol Imaging 2013;40:615-35.  DOI
               196.      Wang Z, Yip LY, Lee JHJ, et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019;25:825-37.  DOI
               197.      Zhao L, Su H, Liu X, et al. mTORC1-c-Myc pathway rewires methionine metabolism for HCC progression through suppressing
                    SIRT4 mediated ADP ribosylation of MAT2A. Cell Biosci 2022;12:183.  DOI  PubMed  PMC
               198.      Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink.
                    Nat Chem Biol 2013;9:300-6.  DOI  PubMed  PMC
               199.      Sinclair LV, Howden AJ, Brenes A, et al. Antigen receptor control of methionine metabolism in T cells. eLife 2019;8:e44210.  DOI
                    PubMed  PMC
               200.      Hung MH, Lee JS, Ma C, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun
                    2021;12:1455.  DOI  PubMed  PMC
               201.      Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5'-
                    methylthioadenosine. IUBMB Life 2009;61:1132-42.  DOI  PubMed
                                                                                        6
               202.      Li T, Tan YT, Chen YX, et al. Methionine deficiency facilitates antitumour immunity by altering m A methylation of immune
                    checkpoint transcripts. Gut 2023;72:501-11.  DOI  PubMed  PMC
               203.      Bian Y, Li W, Kremer DM, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature
                    2020;585:277-82.  DOI  PubMed  PMC
                                                                                     +
               204.      Tripathi P, Kurtulus S, Wojciechowski S, et al. STAT5 is critical to maintain effector CD8  T cell responses. J Immunol
                    2010;185:2116-24.  DOI  PubMed  PMC
               205.      Xu S, Chaudhary O, Rodríguez-Morales P, et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid
                                            +
                    peroxidation and dysfunction in CD8  T cells in tumors. Immunity 2021;54:1561-77.e7.  DOI  PubMed  PMC
                                                        +
               206.      Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8  T cell fatty acid catabolism within a metabolically challenging tumor
                    microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 2017;32:377-91.e9.  DOI  PubMed  PMC
                                                    +
               207.      Ma X, Bi E, Lu Y, et al. Cholesterol Induces CD8  T cell exhaustion in the tumor microenvironment. Cell Metab 2019;30:143-56.e5.
                    DOI  PubMed  PMC
               208.      Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and
                    therapy: thematic review series: biology of lipid rafts. J Lipid Res 2020;61:611-35.  DOI  PubMed  PMC
               209.      Ridker PM. LDL cholesterol: controversies and future therapeutic directions. Lancet 2014;384:607-17.  DOI  PubMed
               210.      Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb
                    Vasc Biol 2006;26:534-40.  DOI
               211.      Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks.
                    Cell Death Dis 2020;11:105.  DOI  PubMed  PMC
               212.      Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate
                    cancer aggressiveness. Cell Metab 2014;19:393-406.  DOI  PubMed  PMC
               213.      Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA. High ACAT1 expression in estrogen receptor negative basal-like
                    breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 2010;122:661-70.  DOI  PubMed
               214.      Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol
                    2021;14:101043.  DOI  PubMed  PMC
               215.      Dong F, Mo Z, Eid W, Courtney KC, Zha X. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through
                    suppressing mTORC1. PLoS One 2014;9:e113789.  DOI  PubMed  PMC
               216.      Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth.
                    Cell Metab 2008;8:224-36.  DOI  PubMed  PMC
               217.      Li J, Gu D, Lee SS, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene
                    2016;35:6378-88.  DOI  PubMed  PMC
               218.      Thysell E, Surowiec I, Hörnberg E, et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased
                    levels of cholesterol. PLoS One 2010;5:e14175.  DOI  PubMed  PMC
               219.      Lei K, Kurum A, Kaynak M, et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat
                    Biomed Eng 2021;5:1411-25.  DOI  PubMed  PMC
               220.      Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2020;2:132-41.
                    DOI  PubMed
               221.      Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic
                    reticulum compartment. Proc Natl Acad Sci U S A 2005;102:2069-74.  DOI  PubMed  PMC
               222.      Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like
                    repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282:18602-12.
   32   33   34   35   36   37   38   39   40   41   42