Page 103 - Read Online
P. 103

Page 10 of 19                     Mai et al. Intell Robot 2023;3(4):466-84  I http://dx.doi.org/10.20517/ir.2023.37















               Algorithm 1: dual-strategy ant colony optimization (DSACO)
                  Data: Mountain Information, Set of ants
                  Result: The optimal path
                1 Initialization parameter information;
                2 for i=1 to the size of the map do
                3     if the grid is free then
                4         Initialize pheromone concentration;
                5     end
                6 end
                7 for k=1 to population size do
                8     Place all ants at the start point S;
                9     for iter=1 to the Maximum number of iterations do
               10         for p= -            to             do
               11            for q=-            to             do
               12                if the position is in the map then
               13                    Calculate the heuristic function value according to Equation 19;
               14                    Calculate the state transition probability of the next node according to
                                       Equation 14;
               15                end
               16            end
               17         end
               18         Select the next point, update the current location of ants;
               19         Dynamically updated pheromones according to Equation 15;
               20         if pheromone concentration ≥           then
               21            pheromone concentration=         ;
               22         else
               23            if pheromone concentration ≤           then
               24                pheromone concentration=         ;
               25            end
               26         end
               27     end
               28 end
               29 Output the final optimal path.
   98   99   100   101   102   103   104   105   106   107   108