Page 128 - Read Online
P. 128
Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06 Page 59 of 64
166. Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett
2014;5:1283-8. DOI PubMed
167. Liu C, Jiang Y, Meng C, Liu X, Li B, Xia S. Amorphous germanium nanomaterials as high-performance anode for lithium and
sodium-ion batteries. Adv Mater Technol 2023;8:2201817. DOI
168. Li M, Zhang Z, Ge X, et al. Enhanced electrochemical properties of carbon coated Zn GeO micron-rods as anode materials for
2 4
sodium-ion batteries. Chem Eng J 2018;331:203-10. DOI
169. Tseng K, Huang S, Chang W, Tuan H. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-
ion and sodium-ion battery anodes. Chem Mater 2018;30:4440-7. DOI
170. Shen H, Ma Z, Yang B, et al. Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion
batteries. J Power Sources 2019;433:126682. DOI
171. Li W, Li X, Liao J, et al. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy
Stor Mater 2019;20:380-7. DOI
172. Sung G, Nam K, Choi J, Park C. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta
2020;331:135393. DOI
173. Wang C, Wang D, Ma X, et al. Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage
by amorphous structure engineering. Adv Funct Mater 2022;32:2204687. DOI
174. Yanilmaz M, Cihanbeyoğlu G, Kim J. Centrifugally spun binder-free n, s-doped Ge@PCNF anodes for Li-ion and Na-ion batteries.
ACS Omega 2023;8:16987-95. DOI PubMed PMC
175. Li Y, Wu F, Li Y, et al. Multilevel gradient-ordered silicon anode with unprecedented sodium storage. Adv Mater 2024;36:e2310270.
DOI
176. Arrieta U, Katcho NA, Arcelus O, Carrasco J. First-principles study of sodium intercalation in crystalline Na Si (0 ≤ x ≤ 4) as anode
x 24
material for Na-ion batteries. Sci Rep 2017;7:5350. DOI PubMed PMC
177. Majid A, Hussain K, Ud-din Khan S, Ud-din Khan S. First principles study of SiC as the anode in sodium ion batteries. New J Chem
2020;44:8910-21. DOI
178. Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun
2016;70:8-12. DOI
179. Han Y, Lin N, Xu T, et al. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries.
Nanoscale 2018;10:3153-8. DOI
180. Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. Feasibility of reversible electrochemical Na-storage and cyclic
stability of amorphous silicon and silicon-graphene film electrodes. J Electrochem Soc 2017;164:A2559-65. DOI
181. Kempf A, Kiefer S, Graczyk-zajac M, Ionescu E, Riedel R. Tin-functionalized silicon oxycarbide as a stable, high-capacity anode
material for Na-ion batteries. Open Ceram 2023;15:100388. DOI
182. Zhang Y, Tang YC, Li XT, et al. Porous amorphous silicon hollow nanoboxes coated with reduced graphene oxide as stable anodes
for sodium-ion batteries. ACS Omega 2022;7:30208-14. DOI PubMed PMC
183. Zeng L, Liu R, Han L, et al. Preparation of a Si/SiO -ordered-mesoporous-carbon nanocomposite as an anode for high-performance
2
lithium-ion and sodium-ion batteries. Chemistry 2018;24:4841-8. DOI
184. Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater
2019;2:2205-13. DOI
185. Gong H, Du T, Liu L, et al. Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery.
Appl Surf Sci 2022;586:152759. DOI
186. Nazarian-samani M, Nazarian-samani M, Haghighat-shishavan S, Kim K. Predelithiation-driven ultrastable Na-ion battery
performance using Si,P-rich ternary M-Si-P anodes. Energy Stor Mater 2022;49:421-32. DOI
187. Din MA, Li C, Zhang L, Han C, Li B. Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and
potassium-ion batteries. Mater Today Phys 2021;21:100486. DOI
188. Sun J, Li M, Oh JAS, Zeng K, Lu L. Recent advances of bismuth based anode materials for sodium-ion batteries. Mater Technol
2018;33:563-73. DOI
189. Park B, Lee S, Han D, et al. Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery.
Appl Surf Sci 2023;614:156188. DOI
190. Hu C, Zhu Y, Ma G, et al. Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate
anode materials for sodium-ion batteries. Electrochim Acta 2021;365:137379. DOI
191. Xue P, Wang N, Fang Z, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling
and high rate anode for sodium-ion batteries. Nano Lett 2019;19:1998-2004. DOI
192. Yin H, Cao M, Yu X, et al. Self-standing Bi O nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible
2
3
sodium-ion batteries. Mater Chem Front 2017;1:1615-21. DOI
193. Liu R, Yu L, He X, et al. Constructing heterointerface of Bi/Bi S with built-in electric field realizes superior sodium-ion storage
2 3
capability. eScience 2023;3:100138. DOI
194. Lin J, Lu S, Zhang Y, Zeng L, Zhang Y, Fan H. Selenide-doped bismuth sulfides (Bi S Se ) and their hierarchical heterostructure
2 3-x x
with ReS for sodium/potassium-ion batteries. J Colloid Interf Sci 2023;645:654-62. DOI
2
195. Pang S, Hu Z, Fan C, et al. Insights into the sodium storage mechanism of Bi Te nanosheets as superior anodes for sodium-ion
2
3