Page 128 - Read Online
P. 128

Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06   Page 59 of 64

               166.      Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett
                    2014;5:1283-8.  DOI  PubMed
               167.      Liu C, Jiang Y, Meng C, Liu X, Li B, Xia S. Amorphous germanium nanomaterials as high-performance anode for lithium and
                    sodium-ion batteries. Adv Mater Technol 2023;8:2201817.  DOI
               168.      Li M, Zhang Z, Ge X, et al. Enhanced electrochemical properties of carbon coated Zn GeO  micron-rods as anode materials for
                                                                              2  4
                    sodium-ion batteries. Chem Eng J 2018;331:203-10.  DOI
               169.      Tseng K, Huang S, Chang W, Tuan H. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-
                    ion and sodium-ion battery anodes. Chem Mater 2018;30:4440-7.  DOI
               170.      Shen H, Ma Z, Yang B, et al. Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion
                    batteries. J Power Sources 2019;433:126682.  DOI
               171.      Li W, Li X, Liao J, et al. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy
                    Stor Mater 2019;20:380-7.  DOI
               172.      Sung G, Nam K, Choi J, Park C. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta
                    2020;331:135393.  DOI
               173.      Wang C, Wang D, Ma X, et al. Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage
                    by amorphous structure engineering. Adv Funct Mater 2022;32:2204687.  DOI
               174.      Yanilmaz M, Cihanbeyoğlu G, Kim J. Centrifugally spun binder-free n, s-doped Ge@PCNF anodes for Li-ion and Na-ion batteries.
                    ACS Omega 2023;8:16987-95.  DOI  PubMed  PMC
               175.      Li Y, Wu F, Li Y, et al. Multilevel gradient-ordered silicon anode with unprecedented sodium storage. Adv Mater 2024;36:e2310270.
                    DOI
               176.      Arrieta U, Katcho NA, Arcelus O, Carrasco J. First-principles study of sodium intercalation in crystalline Na Si  (0 ≤ x ≤ 4) as anode
                                                                                          x  24
                    material for Na-ion batteries. Sci Rep 2017;7:5350.  DOI  PubMed  PMC
               177.      Majid A, Hussain K, Ud-din Khan S, Ud-din Khan S. First principles study of SiC as the anode in sodium ion batteries. New J Chem
                    2020;44:8910-21.  DOI
               178.      Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun
                    2016;70:8-12.  DOI
               179.      Han Y, Lin N, Xu T, et al. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries.
                    Nanoscale 2018;10:3153-8.  DOI
               180.      Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. Feasibility of reversible electrochemical Na-storage and cyclic
                    stability of amorphous silicon and silicon-graphene film electrodes. J Electrochem Soc 2017;164:A2559-65.  DOI
               181.      Kempf A, Kiefer S, Graczyk-zajac M, Ionescu E, Riedel R. Tin-functionalized silicon oxycarbide as a stable, high-capacity anode
                    material for Na-ion batteries. Open Ceram 2023;15:100388.  DOI
               182.      Zhang Y, Tang YC, Li XT, et al. Porous amorphous silicon hollow nanoboxes coated with reduced graphene oxide as stable anodes
                    for sodium-ion batteries. ACS Omega 2022;7:30208-14.  DOI  PubMed  PMC
               183.      Zeng L, Liu R, Han L, et al. Preparation of a Si/SiO -ordered-mesoporous-carbon nanocomposite as an anode for high-performance
                                                      2
                    lithium-ion and sodium-ion batteries. Chemistry 2018;24:4841-8.  DOI
               184.      Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater
                    2019;2:2205-13.  DOI
               185.      Gong H, Du T, Liu L, et al. Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery.
                    Appl Surf Sci 2022;586:152759.  DOI
               186.      Nazarian-samani M, Nazarian-samani M, Haghighat-shishavan S, Kim K. Predelithiation-driven ultrastable Na-ion battery
                    performance using Si,P-rich ternary M-Si-P anodes. Energy Stor Mater 2022;49:421-32.  DOI
               187.      Din MA, Li C, Zhang L, Han C, Li B. Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and
                    potassium-ion batteries. Mater Today Phys 2021;21:100486.  DOI
               188.      Sun J, Li M, Oh JAS, Zeng K, Lu L. Recent advances of bismuth based anode materials for sodium-ion batteries. Mater Technol
                    2018;33:563-73.  DOI
               189.      Park B, Lee S, Han D, et al. Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery.
                    Appl Surf Sci 2023;614:156188.  DOI
               190.      Hu C, Zhu Y, Ma G, et al. Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate
                    anode materials for sodium-ion batteries. Electrochim Acta 2021;365:137379.  DOI
               191.      Xue P, Wang N, Fang Z, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling
                    and high rate anode for sodium-ion batteries. Nano Lett 2019;19:1998-2004.  DOI
               192.      Yin H, Cao M, Yu X, et al. Self-standing Bi O  nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible
                                                  2
                                                    3
                    sodium-ion batteries. Mater Chem Front 2017;1:1615-21.  DOI
               193.      Liu R, Yu L, He X, et al. Constructing heterointerface of Bi/Bi S  with built-in electric field realizes superior sodium-ion storage
                                                              2 3
                    capability. eScience 2023;3:100138.  DOI
               194.      Lin J, Lu S, Zhang Y, Zeng L, Zhang Y, Fan H. Selenide-doped bismuth sulfides (Bi S Se ) and their hierarchical heterostructure
                                                                            2 3-x  x
                    with ReS  for sodium/potassium-ion batteries. J Colloid Interf Sci 2023;645:654-62.  DOI
                          2
               195.      Pang S, Hu Z, Fan C, et al. Insights into the sodium storage mechanism of Bi Te  nanosheets as superior anodes for sodium-ion
                                                                        2
                                                                          3
   123   124   125   126   127   128   129   130   131   132   133