Page 129 - Read Online
P. 129
Page 60 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
batteries. Nanoscale 2022;14:1755-66. DOI
196. Meija R, Lazarenko V, Rublova Y, et al. Electrochemical properties of bismuth chalcogenide/MXene/CNT heterostructures for
application in Na-ion batteries. Sustain Mater Technol 2023;38:e00768. DOI
197. Wang Y, Xu X, Li F, et al. Rational design of bismuth metal anodes for sodium-/potassium-ion batteries: recent advances and
perspectives. Batteries 2023;9:440. DOI
198. Li X, Ni J, Savilov SV, Li L. Materials based on antimony and bismuth for sodium storage. Chemistry 2018;24:13719-27. DOI
199. Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous
sodium cells. J Electrochem Soc 2014;161:A416-21. DOI
200. Sottmann J, Herrmann M, Vajeeston P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the
example of sodium bismuth alloying. Chem Mater 2016;28:2750-6. DOI
201. Zhang X, Qiu X, Lin J, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries. Small
2023;19:e2302071. DOI
202. Liang Y, Song N, Zhang Z, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv
Mater 2022;34:e2202673. DOI
203. Liu Y, Wang Y, Wang H, et al. Binder-free 3D hierarchical Bi Nanosheet/CNTs arrays anode for full sodium-ion battery with high
voltage above 4 V. J Power Sources 2022;540:231639. DOI
204. Pu B, Liu Y, Bai J, et al. Iodine-ion-assisted galvanic replacement synthesis of bismuth nanotubes for ultrafast and ultrastable sodium
storage. ACS Nano 2022;16:18746-56. DOI
205. Zhang W, Cao P, Li L, et al. Carbon-encapsulated 1D SnO /NiO heterojunction hollow nanotubes as high-performance anodes for
2
sodium-ion batteries. Chem Eng J 2018;348:599-607. DOI
206. Li R, Zhang G, Zhang P, et al. Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion
batteries. Chem Eng J 2022;450:138019. DOI
207. Chen Y, Liu H, Guo X, et al. Bimetallic sulfide SnS /FeS nanosheets as high-performance anode materials for sodium-ion batteries.
2
2
ACS Appl Mater Interf 2021;13:39248-56. DOI
208. Zhou J, Dou Q, Zhang L, et al. A novel and fast method to prepare a Cu-supported α-Sb S @CuSbS binder-free electrode for
2 3 2
sodium-ion batteries. RSC Adv 2020;10:29567-74. DOI PubMed PMC
209. Li X, Qu J, Hu Z, Xie H, Yin H. Electrochemically converting Sb S /CNTs to Sb/CNTs composite anodes for sodium-ion batteries.
2 3
Int J Hydrogen Energy 2021;46:17071-83. DOI
210. Li D, Yuan Z, Li J, et al. A bioconfined synthesis strategy of Sb S @N-doped carbon ribbons for boosting ultralong-life sodium
2 3
storage. J Power Sources 2022;546:231875. DOI
211. Zhou J, Ding Y, Dou Q, et al. Enhancing sodium-ion batteries performance enabled by three-dimensional nanoflower Sb S @rGO
2 3
anode material. Mater Chem Phys 2023;303:127837. DOI
212. Li K, Yue L, Hu J, et al. Construction of hollow core-shell Sb S /S@S-doped C composite based on complexation reaction for high
2 3
performance anode of sodium-ion batteries. Appl Surf Sci 2023;613:156111. DOI
213. Dong C, Shao H, Zhou Y, et al. Construction of ZnS/Sb S heterojunction as an ion-transport booster toward high-performance
2 3
sodium storage. Adv Funct Mater 2023;33:2211864. DOI
214. Liu W, Du L, Ju S, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long
cycle life sodium-ion batteries. ACS Nano 2021;15:5679-88. DOI
215. Liu X, Xiao B, Daali A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion
batteries. ACS Energy Lett 2021;6:547-56. DOI
216. Ma X, Ji C, Li X, Liu Y, Xiong X. Red@Black phosphorus core-shell heterostructure with superior air stability for high-rate and
durable sodium-ion battery. Mater Today 2022;59:36-45. DOI
217. Song J, Wu M, Fang K, Tian T, Wang R, Tang H. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode
for sodium-ion batteries by chemical presodiation. J Colloid Interf Sci 2023;630:443-52. DOI
218. Saddique J, Zhang X, Wu T, et al. Enhanced silicon diphosphide-carbon composite anode for long-cycle, high-efficient sodium ion
batteries. ACS Appl Energy Mater 2019;2:2223-9. DOI
219. Ababaikeri R, Sun Y, Wang X, et al. Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with
enhanced electrochemical performances. J Alloys Compd 2023;935:168207. DOI
220. He B, Cunha J, Hou Z, Li G, Yin H. 3D hierarchical self-supporting Bi Se -based anode for high-performance lithium/sodium-ion
2 3
batteries. J Colloid Interf Sci 2023;650:857-64. DOI
221. Wang M, Li H, Cheng X, Tian S, Wang X. Graphene-encapsulated nitrogen-doped carbon@Bi enables rapid, ultrahigh and durable
sodium storage. Batteries Supercaps 2023;6:e202300055. DOI
222. Chen J, Zhang G, Xiao J, et al. A stress self-adaptive bimetallic stellar nanosphere for high-energy sodium-ion batteries. Adv Funct
Mater 2024;34:2307959. DOI
223. Wei S, Li W, Ma Z, Deng X, Li Y, Wang X. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb
composite anodes for high-performance sodium-ion batteries. Small 2023;19:e2304265. DOI
224. Wang J, Bai W, Zhou Y, et al. Sea cucumber-inspired multi-phase metal sulfides with hierarchical structure towards energy storage
with promoted safety. J Energy Stor 2024;76:109743. DOI
225. Hu K, Chen Y, Zheng C, et al. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for