Page 129 - Read Online
P. 129

Page 60 of 64          Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06

                    batteries. Nanoscale 2022;14:1755-66.  DOI
               196.      Meija R, Lazarenko V, Rublova Y, et al. Electrochemical properties of bismuth chalcogenide/MXene/CNT heterostructures for
                    application in Na-ion batteries. Sustain Mater Technol 2023;38:e00768.  DOI
               197.      Wang Y, Xu X, Li F, et al. Rational design of bismuth metal anodes for sodium-/potassium-ion batteries: recent advances and
                    perspectives. Batteries 2023;9:440.  DOI
               198.      Li X, Ni J, Savilov SV, Li L. Materials based on antimony and bismuth for sodium storage. Chemistry 2018;24:13719-27.  DOI
               199.      Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous
                    sodium cells. J Electrochem Soc 2014;161:A416-21.  DOI
               200.      Sottmann J, Herrmann M, Vajeeston P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the
                    example of sodium bismuth alloying. Chem Mater 2016;28:2750-6.  DOI
               201.      Zhang X, Qiu X, Lin J, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries. Small
                    2023;19:e2302071.  DOI
               202.      Liang Y, Song N, Zhang Z, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv
                    Mater 2022;34:e2202673.  DOI
               203.      Liu Y, Wang Y, Wang H, et al. Binder-free 3D hierarchical Bi Nanosheet/CNTs arrays anode for full sodium-ion battery with high
                    voltage above 4 V. J Power Sources 2022;540:231639.  DOI
               204.      Pu B, Liu Y, Bai J, et al. Iodine-ion-assisted galvanic replacement synthesis of bismuth nanotubes for ultrafast and ultrastable sodium
                    storage. ACS Nano 2022;16:18746-56.  DOI
               205.      Zhang W, Cao P, Li L, et al. Carbon-encapsulated 1D SnO /NiO heterojunction hollow nanotubes as high-performance anodes for
                                                           2
                    sodium-ion batteries. Chem Eng J 2018;348:599-607.  DOI
               206.      Li R, Zhang G, Zhang P, et al. Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion
                    batteries. Chem Eng J 2022;450:138019.  DOI
               207.      Chen Y, Liu H, Guo X, et al. Bimetallic sulfide SnS /FeS  nanosheets as high-performance anode materials for sodium-ion batteries.
                                                         2
                                                      2
                    ACS Appl Mater Interf 2021;13:39248-56.  DOI
               208.      Zhou J, Dou Q, Zhang L, et al. A novel and fast method to prepare a Cu-supported α-Sb S @CuSbS  binder-free electrode for
                                                                                2 3     2
                    sodium-ion batteries. RSC Adv 2020;10:29567-74.  DOI  PubMed  PMC
               209.      Li X, Qu J, Hu Z, Xie H, Yin H. Electrochemically converting Sb S /CNTs to Sb/CNTs composite anodes for sodium-ion batteries.
                                                               2 3
                    Int J Hydrogen Energy 2021;46:17071-83.  DOI
               210.      Li D, Yuan Z, Li J, et al. A bioconfined synthesis strategy of Sb S @N-doped carbon ribbons for boosting ultralong-life sodium
                                                               2 3
                    storage. J Power Sources 2022;546:231875.  DOI
               211.      Zhou J, Ding Y, Dou Q, et al. Enhancing sodium-ion batteries performance enabled by three-dimensional nanoflower Sb S @rGO
                                                                                                    2 3
                    anode material. Mater Chem Phys 2023;303:127837.  DOI
               212.      Li K, Yue L, Hu J, et al. Construction of hollow core-shell Sb S /S@S-doped C composite based on complexation reaction for high
                                                            2 3
                    performance anode of sodium-ion batteries. Appl Surf Sci 2023;613:156111.  DOI
               213.      Dong C, Shao H, Zhou Y, et al. Construction of ZnS/Sb S  heterojunction as an ion-transport booster toward high-performance
                                                          2 3
                    sodium storage. Adv Funct Mater 2023;33:2211864.  DOI
               214.      Liu W, Du L, Ju S, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long
                    cycle life sodium-ion batteries. ACS Nano 2021;15:5679-88.  DOI
               215.      Liu X, Xiao B, Daali A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion
                    batteries. ACS Energy Lett 2021;6:547-56.  DOI
               216.      Ma X, Ji C, Li X, Liu Y, Xiong X. Red@Black phosphorus core-shell heterostructure with superior air stability for high-rate and
                    durable sodium-ion battery. Mater Today 2022;59:36-45.  DOI
               217.      Song J, Wu M, Fang K, Tian T, Wang R, Tang H. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode
                    for sodium-ion batteries by chemical presodiation. J Colloid Interf Sci 2023;630:443-52.  DOI
               218.      Saddique J, Zhang X, Wu T, et al. Enhanced silicon diphosphide-carbon composite anode for long-cycle, high-efficient sodium ion
                    batteries. ACS Appl Energy Mater 2019;2:2223-9.  DOI
               219.      Ababaikeri R, Sun Y, Wang X, et al. Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with
                    enhanced electrochemical performances. J Alloys Compd 2023;935:168207.  DOI
               220.      He B, Cunha J, Hou Z, Li G, Yin H. 3D hierarchical self-supporting Bi Se -based anode for high-performance lithium/sodium-ion
                                                                   2  3
                    batteries. J Colloid Interf Sci 2023;650:857-64.  DOI
               221.      Wang M, Li H, Cheng X, Tian S, Wang X. Graphene-encapsulated nitrogen-doped carbon@Bi enables rapid, ultrahigh and durable
                    sodium storage. Batteries Supercaps 2023;6:e202300055.  DOI
               222.      Chen J, Zhang G, Xiao J, et al. A stress self-adaptive bimetallic stellar nanosphere for high-energy sodium-ion batteries. Adv Funct
                    Mater 2024;34:2307959.  DOI
               223.      Wei S, Li W, Ma Z, Deng X, Li Y, Wang X. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb
                    composite anodes for high-performance sodium-ion batteries. Small 2023;19:e2304265.  DOI
               224.      Wang J, Bai W, Zhou Y, et al. Sea cucumber-inspired multi-phase metal sulfides with hierarchical structure towards energy storage
                    with promoted safety. J Energy Stor 2024;76:109743.  DOI
               225.      Hu K, Chen Y, Zheng C, et al. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for
   124   125   126   127   128   129   130   131   132   133   134