Page 131 - Read Online
P. 131
Page 62 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
256. Rasheed T, Anwar MT, Naveed A, Ali A. Biopolymer based materials as alternative greener binders for sustainable electrochemical
energy storage applications. ChemistrySelect 2022;7:e202203202. DOI
257. Feng J, Wang L, Li D, Lu P, Hou F, Liang J. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with
sodium alginate binder for sodium-ion batteries. Prog Nat Sci 2018;28:205-11. DOI
258. Patra J, Rath PC, Li C, et al. A water-soluble NaCMC/NaPAA binder for exceptional improvement of sodium-ion batteries with an
SnO -ordered mesoporous carbon anode. ChemSusChem 2018;11:3923-31. DOI
2
259. Sarkar S, Roy S, Zhao Y, Zhang J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries:
structural design, charge storage mechanisms, key challenges and perspectives. Nano Res 2021;14:3690-723. DOI
260. Zhang Y, Su Q, Xu W, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free
anodes for sodium-ion batteries. Adv Sci 2019;6:1900162. DOI
261. Choi Y, Lee J. Continuous/reversible phase transition behaviors and their effect on the hysteresis energy loss of the anodes in Na-ion
batteries. Electrochim Acta 2019;328:135106. DOI
262. Huang Z, Zheng X, Liu H, et al. Long cycle life and high-rate sodium metal batteries enabled by an active/inactive Co-Sn alloy
interface. Adv Funct Mater 2024;34:2302062. DOI
263. Sarkar S, Mukherjee PP. Synergistic voltage and electrolyte mediation improves sodiation kinetics in µ-Sn alloy-anodes. Energy Stor
Mater 2021;43:305-16. DOI
+
264. Wang XZ, Zuo Y, Qin Y, et al. Fast Na kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium
oxide cathodes. Adv Mater 2024;36:e2312300. DOI
265. Liu G, Sun Z, Shi X, et al. 2D-layer-structure Bi to quasi-1D-structure NiBi : structural dimensionality reduction to superior sodium
3
and potassium ion storage. Adv Mater 2023;35:e2305551. DOI
266. Feng D, Tang S, Xu H, Zeng T. High performance sodium-ion anodes based on FeSb S /Sb embedded within porous reduced
2 4
graphene oxide/carbon nanotubes matrix. J Alloys Compd 2023;931:167576. DOI
267. Li C, Pei YR, Zhao M, Yang CC, Jiang Q. Sodium storage performance of ultrasmall SnSb nanoparticles. Chem Eng J
2021;420:129617. DOI
268. Kang J, Lee JI, Choi S, Choi Y, Park S, Ryu J. Nonporous oxide-terminated multicomponent bulk anode enabling energy-dense
sodium-ion batteries. ACS Appl Mater Interf 2023;15:26576-84. DOI
269. Gandharapu P, Das A, Tripathi R, Srihari V, Poswal HK, Mukhopadhyay A. Facile and scalable development of high-performance
carbon-free Tin-based anodes for sodium-ion batteries. ACS Appl Mater Interf 2023;15:37504-16. DOI PubMed
270. Cheng X, Li D, Peng S, et al. In-situ alloy-modified sodiophilic current collectors for anode-less sodium metal batteries. Batteries
2023;9:408. DOI
271. Patel PC, Awasthi S, Mishra PK, Lakharwal P, Kashyap J. Fe-as intermetallic alloys: a way out for sodium-ion batteries. Energy
Fuels 2023;37:16062-71. DOI
272. Li H, He Y, Li X, et al. Pomegranate-like Sn-Ni nanoalloys@N-doped carbon nanocomposites as high-performance anode materials
for Li-ion and Na-ion batteries. Appl Surf Sci 2023;611:155672. DOI
273. Li W, Yu C, Huang S, et al. Synergetic Sn incorporation-Zn substitution in copper-based sulfides enabling superior Na-ion storage.
Adv Mater 2024;36:e2305957. DOI
274. Ye W, Feng Z, Xiong D, He M. Mesoporous C-covered Sn/SnO -Ni nanoalloy particles as anode materials for high-performance
2
lithium/sodium-ion batteries. Electrochim Acta 2023;471:143401. DOI
275. Sohan A, Kumar A, Narayanan TN, Kollu P. Tin antimony alloy based reduced graphene oxide composite for fast charging sodium-
ion batteries. J Energy Stor 2023;74:109312. DOI
276. Chen X, Zhang N, He P, Ding X. High-capacity Sb SnO with controlled Sb/Sn phase modulation as advanced anode material for
2
5
sodium-ion batteries. J Alloys Compd 2023;938:168472. DOI
277. Meng F, Chen X, Zhou H, et al. Controllable fabrication of Sn/Sb nanodomains improved Sb SnO anodes for sodium ion batteries.
2
5
ChemistrySelect 2023;8:e202302417. DOI
278. Bhar M, Pappu S, Bhattacharjee U, Bulusu SV, Rao TN, Martha SK. Designing a freestanding electrode of intermetallic Ni-Sn alloy
deposit as an anode for lithium-ion and sodium-ion batteries. J Electrochem Soc 2023;170:040501. DOI
279. Priyanka P, Nalini B, Soundarya GG, Christopher Selvin P, Dutta DP. Effect of pulverisation on sulfide and tin antimonide anodes
for sodium-ion batteries. Front Energy Res 2023;11:1266653. DOI
280. Hou H, Jing M, Yang Y, et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A
2015;3:2971-7. DOI
281. Kebede MA. Tin oxide-based anodes for both lithium-ion and sodium-ion batteries. Curr Opin Electrochem 2020;21:182-7. DOI
282. Li Z, Zheng Y, Liu Q, et al. Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable
batteries. J Mater Chem A 2020;8:19113-32. DOI
283. Sang J, Zhang X, Liu K, et al. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient
high-capacity anode for sodium-ion batteries. Adv Funct Mater 2023;33:2211640. DOI
284. Liu M, Zhang J, Sun Z, et al. Dual mechanism for sodium based energy storage. Small 2023;19:e2206922. DOI
285. Ru J, He T, Chen B, et al. Covalent assembly of MoS nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries.
2
Angew Chem Int Ed 2020;59:14621-7. DOI
286. Xu S, Dong H, Yang D, et al. Promising cathode materials for sodium-ion batteries from lab to application. ACS Cent Sci