Page 131 - Read Online
P. 131

Page 62 of 64          Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06

               256.      Rasheed T, Anwar MT, Naveed A, Ali A. Biopolymer based materials as alternative greener binders for sustainable electrochemical
                    energy storage applications. ChemistrySelect 2022;7:e202203202.  DOI
               257.      Feng J, Wang L, Li D, Lu P, Hou F, Liang J. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with
                    sodium alginate binder for sodium-ion batteries. Prog Nat Sci 2018;28:205-11.  DOI
               258.      Patra J, Rath PC, Li C, et al. A water-soluble NaCMC/NaPAA binder for exceptional improvement of sodium-ion batteries with an
                    SnO -ordered mesoporous carbon anode. ChemSusChem 2018;11:3923-31.  DOI
                       2
               259.      Sarkar S, Roy S, Zhao Y, Zhang J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries:
                    structural design, charge storage mechanisms, key challenges and perspectives. Nano Res 2021;14:3690-723.  DOI
               260.      Zhang Y, Su Q, Xu W, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free
                    anodes for sodium-ion batteries. Adv Sci 2019;6:1900162.  DOI
               261.      Choi Y, Lee J. Continuous/reversible phase transition behaviors and their effect on the hysteresis energy loss of the anodes in Na-ion
                    batteries. Electrochim Acta 2019;328:135106.  DOI
               262.      Huang Z, Zheng X, Liu H, et al. Long cycle life and high-rate sodium metal batteries enabled by an active/inactive Co-Sn alloy
                    interface. Adv Funct Mater 2024;34:2302062.  DOI
               263.      Sarkar S, Mukherjee PP. Synergistic voltage and electrolyte mediation improves sodiation kinetics in µ-Sn alloy-anodes. Energy Stor
                    Mater 2021;43:305-16.  DOI
                                              +
               264.      Wang XZ, Zuo Y, Qin Y, et al. Fast Na  kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium
                    oxide cathodes. Adv Mater 2024;36:e2312300.  DOI
               265.      Liu G, Sun Z, Shi X, et al. 2D-layer-structure Bi to quasi-1D-structure NiBi : structural dimensionality reduction to superior sodium
                                                                     3
                    and potassium ion storage. Adv Mater 2023;35:e2305551.  DOI
               266.      Feng D, Tang S, Xu H, Zeng T. High performance sodium-ion anodes based on FeSb S /Sb embedded within porous reduced
                                                                               2 4
                    graphene oxide/carbon nanotubes matrix. J Alloys Compd 2023;931:167576.  DOI
               267.      Li C, Pei YR, Zhao M, Yang CC, Jiang Q. Sodium storage performance of ultrasmall SnSb nanoparticles.  Chem Eng J
                    2021;420:129617.  DOI
               268.      Kang J, Lee JI, Choi S, Choi Y, Park S, Ryu J. Nonporous oxide-terminated multicomponent bulk anode enabling energy-dense
                    sodium-ion batteries. ACS Appl Mater Interf 2023;15:26576-84.  DOI
               269.      Gandharapu P, Das A, Tripathi R, Srihari V, Poswal HK, Mukhopadhyay A. Facile and scalable development of high-performance
                    carbon-free Tin-based anodes for sodium-ion batteries. ACS Appl Mater Interf 2023;15:37504-16.  DOI  PubMed
               270.      Cheng X, Li D, Peng S, et al. In-situ alloy-modified sodiophilic current collectors for anode-less sodium metal batteries. Batteries
                    2023;9:408.  DOI
               271.      Patel PC, Awasthi S, Mishra PK, Lakharwal P, Kashyap J. Fe-as intermetallic alloys: a way out for sodium-ion batteries. Energy
                    Fuels 2023;37:16062-71.  DOI
               272.      Li H, He Y, Li X, et al. Pomegranate-like Sn-Ni nanoalloys@N-doped carbon nanocomposites as high-performance anode materials
                    for Li-ion and Na-ion batteries. Appl Surf Sci 2023;611:155672.  DOI
               273.      Li W, Yu C, Huang S, et al. Synergetic Sn incorporation-Zn substitution in copper-based sulfides enabling superior Na-ion storage.
                    Adv Mater 2024;36:e2305957.  DOI
               274.      Ye W, Feng Z, Xiong D, He M. Mesoporous C-covered Sn/SnO -Ni nanoalloy particles as anode materials for high-performance
                                                               2
                    lithium/sodium-ion batteries. Electrochim Acta 2023;471:143401.  DOI
               275.      Sohan A, Kumar A, Narayanan TN, Kollu P. Tin antimony alloy based reduced graphene oxide composite for fast charging sodium-
                    ion batteries. J Energy Stor 2023;74:109312.  DOI
               276.      Chen X, Zhang N, He P, Ding X. High-capacity Sb SnO  with controlled Sb/Sn phase modulation as advanced anode material for
                                                      2
                                                         5
                    sodium-ion batteries. J Alloys Compd 2023;938:168472.  DOI
               277.      Meng F, Chen X, Zhou H, et al. Controllable fabrication of Sn/Sb nanodomains improved Sb SnO  anodes for sodium ion batteries.
                                                                                 2
                                                                                    5
                    ChemistrySelect 2023;8:e202302417.  DOI
               278.      Bhar M, Pappu S, Bhattacharjee U, Bulusu SV, Rao TN, Martha SK. Designing a freestanding electrode of intermetallic Ni-Sn alloy
                    deposit as an anode for lithium-ion and sodium-ion batteries. J Electrochem Soc 2023;170:040501.  DOI
               279.      Priyanka P, Nalini B, Soundarya GG, Christopher Selvin P, Dutta DP. Effect of pulverisation on sulfide and tin antimonide anodes
                    for sodium-ion batteries. Front Energy Res 2023;11:1266653.  DOI
               280.      Hou H, Jing M, Yang Y, et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A
                    2015;3:2971-7.  DOI
               281.      Kebede MA. Tin oxide-based anodes for both lithium-ion and sodium-ion batteries. Curr Opin Electrochem 2020;21:182-7.  DOI
               282.      Li Z, Zheng Y, Liu Q, et al. Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable
                    batteries. J Mater Chem A 2020;8:19113-32.  DOI
               283.      Sang J, Zhang X, Liu K, et al. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient
                    high-capacity anode for sodium-ion batteries. Adv Funct Mater 2023;33:2211640.  DOI
               284.      Liu M, Zhang J, Sun Z, et al. Dual mechanism for sodium based energy storage. Small 2023;19:e2206922.  DOI
               285.      Ru J, He T, Chen B, et al. Covalent assembly of MoS  nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries.
                                                       2
                    Angew Chem Int Ed 2020;59:14621-7.  DOI
               286.      Xu S, Dong H, Yang D, et al. Promising cathode materials for sodium-ion batteries from lab to application. ACS Cent Sci
   126   127   128   129   130   131   132   133   134   135   136