Page 126 - Read Online
P. 126
Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06 Page 57 of 64
Chem Eng J 2023;465:142963. DOI
107. Fan W, Gao Y, Liu H, Xia X. Rational design of conductive MXenes-based networks by Sn and Sn P nanoparticles for durable
4 3
sodium-ion battery. J Power Sources 2023;562:232750. DOI
108. Baggetto L, Ganesh P, Sun C, Meisner RA, Zawodzinski TA, Veith GM. Intrinsic thermodynamic and kinetic properties of Sb
electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 2013;1:7985-94. DOI
109. Liu Y, Zhou B, Liu S, Ma Q, Zhang WH. Galvanic replacement synthesis of highly uniform sb nanotubes: reaction mechanism and
enhanced sodium storage performance. ACS Nano 2019;13:5885-92. DOI
110. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for
Na-ion batteries. Chem Commun 2012;48:7070-2. DOI
111. Xu X, Dou Z, Gu E, Si L, Zhou X, Bao J. Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for
highly reversible sodium storage. J Mater Chem A 2017;5:13411-20. DOI
112. Wu C, Shen L, Chen S, et al. Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes
for sodium storage. Energy Stor Mater 2018;10:122-9. DOI
113. Kong B, Zu L, Peng C, et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase
transformation for electrochemical sodium storage. J Am Chem Soc 2016;138:16533-41. DOI
114. Park J, Kim M, Choi M, et al. Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode
material in sodium-ion batteries. J Power Sources 2023;568:232908. DOI
115. Liu Y, Qing Y, Zhou B, et al. Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries.
ACS Nano 2023;17:2431-9. DOI
116. Nieto K, Windsor DS, Kale AR, Gallawa JR, Medina DA, Prieto AL. Structural control of electrodeposited sb anodes through
solution additives and their influence on electrochemical performance in Na-ion batteries. J Phys Chem C 2023;127:12415-27. DOI
117. Zheng X, You J, Fan J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and
rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 2020;77:105123. DOI
118. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo Sb as a very fast anode material for lithium-ion and sodium-ion
3 7
batteries. J Mater Chem A 2013;1:11163-9. DOI
119. Song Z, Wang G, Chen Y, Lu Y, Wen Z. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as
freestanding anode for long-term cycling sodium-ion batteries. Chem Eng J 2023;463:142289. DOI
120. Shen H, Zheng X, Kang Q, et al. High-performance and sodiation mechanism of a pulse potential-electrodeposited Sb-Zn alloy as an
anode for sodium-ion batteries. Appl Surf Sci 2023;609:155243. DOI
121. Chen B, Liang M, Wu Q, Zhu S, Zhao N, He C. Recent developments of antimony-based anodes for sodium- and potassium-ion
batteries. Trans Tianjin Univ 2022;28:6-32. DOI
122. Zhou X, Deng H, Wang A, Song J, Lei Z, Xu Y. Antimony oxides-based anode materials for alkali metal-ion storage. Chemistry
2023;29:e202300506. DOI PubMed
123. Deng M, Li S, Hong W, et al. Octahedral Sb O as high-performance anode for lithium and sodium storage. Mater Chem Phys
2 3
2019;223:46-52. DOI
124. Kim S, Qu S, Zhang R, Braun PV. High volumetric and gravimetric capacity electrodeposited mesostructured Sb O sodium ion
2
3
battery anodes. Small 2019;15:e1900258. DOI
125. Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater
2018;13:247-56. DOI
126. Li D, Li J, Cao J, Fu X, Zhou L, Han W. Highly flexible free-standing Sb/Sb O @N-doped carbon nanofiber membranes for sodium
2 3
ion batteries with excellent stability. Sustain Energy Fuels 2020;4:5732-8. DOI
127. Ye J, Xia G, Zheng Z, Hu C. Facile controlled synthesis of coral-like nanostructured Sb O @Sb anode materials for high
2 3
performance sodium-ion batteries. Int J Hydrogen Energy 2020;45:9969-78. DOI
128. Liao S, Wang X, Hu H, Chen D, Zhang M, Luo J. Carbon-encapsulated Sb O nanoparticles for an efficient and durable sodium-ion
6
13
battery anode. J Alloys Compd 2021;852:156939. DOI
129. Subramanyan K, Palmurukan MR, Lee Y, Aravindan V. Exfoliated graphene oxide@ Sb O octahedrons as alloy-conversion anode
2
3
for high-performance Na-ion batteries with P2-type Na Ni Mn O cathode. Electrochim Acta 2023;470:143308. DOI
2/3 1/3 2/3 2
130. Lakshmi K, Deivanayagam R, Shaijumon M. Carbon nanotube ‘wired’ octahedral Sb O /graphene aerogel as efficient anode material
2 3
for sodium and lithium ion batteries. J Alloys Compd 2021;857:158267. DOI
131. Deng M, Li S, Hong W, et al. Natural stibnite ore (Sb S ) embedded in sulfur-doped carbon sheets: enhanced electrochemical
2 3
properties as anode for sodium ions storage. RSC Adv 2019;9:15210-6. DOI PubMed PMC
132. Xie J, Xia J, Yuan Y, et al. Sb S embedded in carbon-silicon oxide nanofibers as high-performance anode materials for lithium-ion
2 3
and sodium-ion batteries. J Power Sources 2019;435:226762. DOI
133. Huang Y, Wang Z, Jiang Y, et al. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for
sodium-ion batteries with favorable kinetics. Adv Sci 2018;5:1800613. DOI PubMed PMC
134. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo WB. Bimetallic sulfide Sb S @FeS hollow nanorods as high-performance anode
2 3 2
materials for sodium-ion batteries. ACS Nano 2020;14:3610-20. DOI
135. Lin J, Yao L, Zhang C, et al. Construction of Sb S @SnS@C tubular heterostructures as high-performance anode materials for
2 3
sodium-ion batteries. ACS Sustain Chem Eng 2021;9:11280-9. DOI