Page 123 - Read Online
P. 123

Page 54 of 64          Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06

                    Funct Mater 2019;29:1808745.  DOI
               18.       Sadik-zada ER, Gatto A, Scharfenstein M. Sustainable management of lithium and green hydrogen and long-run perspectives of
                    electromobility. Technol Forecast Soc Change 2023;186:121992.  DOI
               19.       Li X, Sengupta T, Si Mohammed K, Jamaani F. Forecasting the lithium mineral resources prices in China: evidence with facebook
                    prophet (Fb-P) and artificial neural networks (ANN) methods. Resour Policy 2023;82:103580.  DOI
               20.       Frith JT, Lacey MJ, Ulissi U. A non-academic perspective on the future of lithium-based batteries. Nat Commun 2023;14:420.  DOI
                    PubMed  PMC
               21.       Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:1-11.  DOI
               22.       Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew
                    Chem Int Ed 2018;57:102-20.  DOI  PubMed
               23.       Zhao L, Hu Z, Lai W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries
                    beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.  DOI
               24.       Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion
                    batteries. Small 2021;17:e1903194.  DOI  PubMed
               25.       Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Na-ion battery anodes: materials and electrochemistry. ACC Chem Res 2016;49:231-
                    40.  DOI
               26.       He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode
                    materials for practical sodium ion batteries. Energy Stor Mater 2019;23:233-51.  DOI
               27.       Patrike A, Yadav P, Shelke V, Shelke M. Research progress and perspective on lithium/sodium metal anodes for next-generation
                    rechargeable batteries. ChemSusChem 2022;15:e202200504.  DOI  PubMed
               28.       Chen J, Adit G, Li L, Zhang Y, Chua DHC, Lee PS. Optimization strategies toward functional sodium-ion batteries. Energy Environ
                    Mater 2023;6:e12633.  DOI
               29.       Qiao S, Zhou Q, Ma M, Liu HK, Dou SX, Chong S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano
                    2023;17:11220-52.  DOI  PubMed
               30.       Sarkar S, Peter SC. An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future
                    prospects from material synthesis to battery performance. J Mater Chem A 2021;9:5164-96.  DOI
               31.       Xu G, Amine R, Abouimrane A, et al. Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and
                    advance sodium-ion batteries. Adv Energy Mater 2018;8:1702403.  DOI
               32.       Hou Z, Lei D, Jiang M, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage.
                    ACS Appl Mater Interfaces 2023;15:1367-75.  DOI
               33.       Yang G, Ilango PR, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small
                    2019;15:e1900628.  DOI
               34.       Wang  W,  Wang  B,  Li  Y,  et  al.  Hard  carbon  derived  from  different  precursors  for  sodium  storage.  Chem  Asian  J
                    2024;19:e202301146.  DOI
               35.       Veerasubramani GK, Park M, Nakate UT, et al. Intrinsically nitrogen-enriched biomass-derived hard carbon with enhanced
                    performance as a sodium-ion battery anode. Energy Fuels 2024;38:7368-78.  DOI
               36.       Tang Y, He J, Peng J, et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery
                    anode. Energy Fuels 2024;38:7389-98.  DOI
               37.       Zhang G, Chen C, Xu C, et al. Unraveling the microcrystalline carbon evolution mechanism of biomass-derived hard carbon for
                    sodium-ion batteries. Energy Fuels 2024;38:8326-36.  DOI
               38.       Molaiyan P, Dos Reis GS, Karuppiah D, Subramaniyam CM, García-alvarado F, Lassi U. Recent progress in biomass-derived carbon
                    materials for Li-ion and Na-ion batteries - a review. Batteries 2023;9:116.  DOI
               39.       Hu H, Xiao Y, Ling W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery. Energy Tech
                    2021;9:2000730.  DOI
               40.       Li N, Wang Y, Liu L, et al. “Self-doping” defect engineering in SnP @gamma-irradiated hard carbon anode for rechargeable sodium
                                                                3
                    storage. J Colloid Interface Sci 2021;592:279-90.  DOI
               41.       Fang L, Bahlawane N, Sun W, et al. Conversion-alloying anode materials for sodium ion batteries. Small 2021;17:e2101137.  DOI
               42.       Li X, Guo Y, Hu Z, et al. Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically
                    alloying bismuth. ACS Appl Mater Interfaces 2023;15:45926-37.  DOI
               43.       Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv
                    Energy Mater 2018;8:1702582.  DOI
               44.       Zhao S, Guo Z, Yang J, Wang C, Sun B, Wang G. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small
                    2021;17:e2007431.  DOI
               45.       Lu X, Adkins ER, He Y, et al. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high
                    capacity. Chem Mater 2016;28:1236-42.  DOI
               46.       Chen Y, Li F, Guo Z, et al. Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J Power
                    Sources 2023;557:232534.  DOI
               47.       Tang Z, Zhang R, Wang H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion
                    battery. Nat Commun 2023;14:6024.  DOI  PubMed  PMC
   118   119   120   121   122   123   124   125   126   127   128