Page 123 - Read Online
P. 123
Page 54 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
Funct Mater 2019;29:1808745. DOI
18. Sadik-zada ER, Gatto A, Scharfenstein M. Sustainable management of lithium and green hydrogen and long-run perspectives of
electromobility. Technol Forecast Soc Change 2023;186:121992. DOI
19. Li X, Sengupta T, Si Mohammed K, Jamaani F. Forecasting the lithium mineral resources prices in China: evidence with facebook
prophet (Fb-P) and artificial neural networks (ANN) methods. Resour Policy 2023;82:103580. DOI
20. Frith JT, Lacey MJ, Ulissi U. A non-academic perspective on the future of lithium-based batteries. Nat Commun 2023;14:420. DOI
PubMed PMC
21. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:1-11. DOI
22. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew
Chem Int Ed 2018;57:102-20. DOI PubMed
23. Zhao L, Hu Z, Lai W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries
beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704. DOI
24. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion
batteries. Small 2021;17:e1903194. DOI PubMed
25. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Na-ion battery anodes: materials and electrochemistry. ACC Chem Res 2016;49:231-
40. DOI
26. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode
materials for practical sodium ion batteries. Energy Stor Mater 2019;23:233-51. DOI
27. Patrike A, Yadav P, Shelke V, Shelke M. Research progress and perspective on lithium/sodium metal anodes for next-generation
rechargeable batteries. ChemSusChem 2022;15:e202200504. DOI PubMed
28. Chen J, Adit G, Li L, Zhang Y, Chua DHC, Lee PS. Optimization strategies toward functional sodium-ion batteries. Energy Environ
Mater 2023;6:e12633. DOI
29. Qiao S, Zhou Q, Ma M, Liu HK, Dou SX, Chong S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano
2023;17:11220-52. DOI PubMed
30. Sarkar S, Peter SC. An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future
prospects from material synthesis to battery performance. J Mater Chem A 2021;9:5164-96. DOI
31. Xu G, Amine R, Abouimrane A, et al. Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and
advance sodium-ion batteries. Adv Energy Mater 2018;8:1702403. DOI
32. Hou Z, Lei D, Jiang M, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage.
ACS Appl Mater Interfaces 2023;15:1367-75. DOI
33. Yang G, Ilango PR, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small
2019;15:e1900628. DOI
34. Wang W, Wang B, Li Y, et al. Hard carbon derived from different precursors for sodium storage. Chem Asian J
2024;19:e202301146. DOI
35. Veerasubramani GK, Park M, Nakate UT, et al. Intrinsically nitrogen-enriched biomass-derived hard carbon with enhanced
performance as a sodium-ion battery anode. Energy Fuels 2024;38:7368-78. DOI
36. Tang Y, He J, Peng J, et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery
anode. Energy Fuels 2024;38:7389-98. DOI
37. Zhang G, Chen C, Xu C, et al. Unraveling the microcrystalline carbon evolution mechanism of biomass-derived hard carbon for
sodium-ion batteries. Energy Fuels 2024;38:8326-36. DOI
38. Molaiyan P, Dos Reis GS, Karuppiah D, Subramaniyam CM, García-alvarado F, Lassi U. Recent progress in biomass-derived carbon
materials for Li-ion and Na-ion batteries - a review. Batteries 2023;9:116. DOI
39. Hu H, Xiao Y, Ling W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery. Energy Tech
2021;9:2000730. DOI
40. Li N, Wang Y, Liu L, et al. “Self-doping” defect engineering in SnP @gamma-irradiated hard carbon anode for rechargeable sodium
3
storage. J Colloid Interface Sci 2021;592:279-90. DOI
41. Fang L, Bahlawane N, Sun W, et al. Conversion-alloying anode materials for sodium ion batteries. Small 2021;17:e2101137. DOI
42. Li X, Guo Y, Hu Z, et al. Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically
alloying bismuth. ACS Appl Mater Interfaces 2023;15:45926-37. DOI
43. Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv
Energy Mater 2018;8:1702582. DOI
44. Zhao S, Guo Z, Yang J, Wang C, Sun B, Wang G. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small
2021;17:e2007431. DOI
45. Lu X, Adkins ER, He Y, et al. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high
capacity. Chem Mater 2016;28:1236-42. DOI
46. Chen Y, Li F, Guo Z, et al. Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J Power
Sources 2023;557:232534. DOI
47. Tang Z, Zhang R, Wang H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion
battery. Nat Commun 2023;14:6024. DOI PubMed PMC