Page 124 - Read Online
P. 124
Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06 Page 55 of 64
48. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI. Prospects in anode materials for sodium ion batteries - a review.
Renew Sust Energy Rev 2020;119:109549. DOI
49. Xiao B, Rojo T, Li X. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem 2019;12:133-44. DOI
PubMed
50. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion
batteries*. In: Nanda J, Augustyn V, editors. Transition metal oxides for electrochemical energy storage. Wiley; 2022. pp. 55-99.
DOI
51. Lim YV, Li XL, Yang HY. Recent tactics and advances in the application of metal sulfides as high-performance anode materials for
rechargeable sodium-ion batteries. Adv Funct Mater 2021;31:2006761. DOI
52. Hao Z, Shi X, Yang Z, Li L, Chou S. Developing high-performance metal selenides for sodium-ion batteries. Adv Funct Mater
2022;32:2208093. DOI
53. Fan H, Mao P, Sun H, et al. Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater
Horiz 2022;9:524-46. DOI
54. Zhang W, Liu T, Wang Y, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy
2021;90:106475. DOI
55. Li G, Guo S, Xiang B, et al. Recent advances and perspectives of microsized alloying-type porous anode materials in high-
performance Li- and Na-ion batteries. Energy Mater 2022;2:200020. DOI
56. Shao R, Sun Z, Wang L, et al. Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a
comparison with lithium-ion batteries. Angew Chem Int Ed 2024;136:e202320183. DOI
57. Chen Z, Wu X, Sun Z, et al. Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon
frameworks encasing flower-like bismuth microspheres. Adv Energy Mater 2024;14:2400132. DOI
58. Yao Q, Zheng C, Liu K, et al. Bi nanospheres embedded in N-doped carbon nanowires facilitate ultrafast and ultrastable sodium
storage. Adv Sci 2024;11:e2401730. DOI
59. Li W, Ke L, Wei Y, et al. Highly reversible sodium storage in a GeP /C composite anode with large capacity and low voltage. J
5
Mater Chem A 2017;5:4413-20. DOI
60. Li X, Qu J, Zhao Y, Lai Q, Wang P, Yi T. Reaction mechanisms, recent progress and future prospects of tin selenide-based
composites for alkali-metal-ion batteries. Compos Part B Eng 2022;242:110045. DOI
61. Wu X, Lan X, Hu R, Yao Y, Yu Y, Zhu M. Tin-based anode materials for stable sodium storage: progress and perspective. Adv Mater
2022;34:e2106895. DOI
62. Zheng C, Yao Q, Li R, et al. Construction of robust solid-electrolyte interphase via electrode additive for high-performance Sn-based
anodes of sodium-ion batteries. Energy Stor Mater 2024;67:103334. DOI
63. Huang J, Guo X, Du X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in
sodium ion batteries. Energy Environ Sci 2019;12:1550-7. DOI
64. Duan YK, Li ZW, Zhang SC, et al. Stannate-based materials as anodes in lithium-ion and sodium-ion batteries: a review. Molecules
2023;28:5037. DOI PubMed PMC
65. Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci 2022;9:e2201207. DOI PubMed
PMC
66. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from
scientific research to practical application. Adv Mater 2019;31:e1808393. DOI
67. Mou H, Xiao W, Miao C, Li R, Yu L. Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review.
Front Chem 2020;8:141. DOI PubMed PMC
68. Liang J, Zhang L, Xili D, Kang J. Research progress on tin-based anode materials for sodium ion batteries. Rare Met 2020;39:1005-
18. DOI
69. Sadan MK, Kim H, Kim C, et al. Ultra-long cycle life of flexible Sn anode using DME electrolyte. J Alloys Compd 2021;871:159549.
DOI
70. Daali A, Zhou X, Zhao C, et al. In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion
batteries. Nano Energy 2023;115:108753. DOI
71. Zheng C, Ji D, Yao Q, et al. Electrostatic shielding boosts electrochemical performance of alloy-type anode materials of sodium-ion
batteries. Angew Chem Int Ed 2023;62:e202214258. DOI
72. Yao Q, Zhu Y, Zheng C, et al. Intermolecular cross-linking reinforces polymer binders for durable alloy-type anode materials of
sodium-ion batteries. Adv Energy Mater 2023;13:2202939. DOI
73. Shen H, An Y, Man Q, et al. Chemical prelithiation/presodiation strategies toward controllable and scalable synthesis of microsized
nanoporous tin at room temperature for high-energy sodium-ion batteries. Adv Funct Mater 2024;34:2309834. DOI
74. Ying H, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci
2017;4:1700298. DOI PubMed PMC
75. Yang J, Guo X, Gao H, et al. A high-performance alloy-based anode enabled by surface and interface engineering for wide-
temperature sodium-ion batteries. Adv Energy Mater 2023;13:2300351. DOI
76. Zhang S, Yue L, Wang M, Feng Y, Li Z, Mi J. SnO nanoparticles confined by N-doped and CNTs-modified carbon fibers as
2
superior anode material for sodium-ion battery. Solid State Ionics 2018;323:105-11. DOI