Page 127 - Read Online
P. 127
Page 58 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
136. Zhang H, Ren M, Jiang W, Yao J, Pan L, Yang J. Hierarchical Sb S @m-Ti C T composite anode with enhanced Na-ion storage
2
x
2 3
3
properties. J Alloys Compd 2021;887:161318. DOI
137. Li D, Li J, Liu H, et al. Ti C T constrained Sb S composite biomass-derived carbon ribbon film achieves stable sodium storage for
2 x
2 3
3
flexible quasi-solid full-battery. Chem Eng J 2023;477:147045. DOI
138. Zhu M, Li J, Yang X, Li X, Wang L, Lü W. 3D reduced graphene oxide wrapped MoS @Sb S heterostructures for high performance
2 2 3
sodium-ion batteries. Appl Surf Sci 2023;624:157106. DOI
+
139. Ou X, Yang C, Xiong X, et al. A new rGO-overcoated Sb Se nanorods anode for Na battery: in situ X-ray diffraction study on a live
2 3
sodiation/desodiation process. Adv Funct Mater 2017;27:1606242. DOI
140. Li J, Zhang W, Zheng W. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small
2024;20:e2305021. DOI
141. Nam K, Park C. 2D layered Sb Se -based amorphous composite for high-performance Li- and Na-ion battery anodes. J Power
3
2
Sources 2019;433:126639. DOI
142. Wang Y, Cao D, Zhang K, et al. Cation-exchange construction of ZnSe/Sb Se hollow microspheres coated by nitrogen-doped carbon
2 3
with enhanced sodium ion storage capability. Nanoscale 2020;12:17915-24. DOI
143. Ihsan-ul-haq M, Huang H, Wu J, et al. Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous
Sb Se /CNT composite anodes for ultrafast sodium storage. Carbon 2021;171:119-29. DOI
3
2
144. Hu L, Pan J, Zhao P, Shi G, Wang B, Huang F. A new method of synthesis of Sb Se /rGO as a high-rate and low-temperature anode
2
3
for sodium-ion batteries. Mater Adv 2022;3:3554-61. DOI
2
145. Chong S, Ma M, Yuan L, et al. Hierarchical encapsulation and rich sp N assist Sb Se -based conversion-alloying anode for long-life
3
2
sodium- and potassium-ion storage. Energy Environ Mater 2023;6:e12458. DOI
146. Yang J, Li J, Lu J, et al. Synergistically boosting reaction kinetics and suppressing polyselenide shuttle effect by Ti C T /Sb Se film
3 2 x 2 3
anode in high-performance sodium-ion batteries. J Colloid Interf Sci 2023;649:234-44. DOI
147. Wu Y, Luo W, Gao P, et al. Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb Se with in situ
2 3
transmission electron microscopy. Nano Energy 2020;77:105299. DOI
148. Wang Y, Niu P, Li J, Wang S, Li L. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy
Stor Mater 2021;34:436-60. DOI
149. Dong S, Wang L, Huang X, Liang J, He X. Challenges and prospects of phosphorus-based anode materials for secondary batteries.
Batteries Supercaps 2023;6:e202300265. DOI
150. Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS
Nano 2018;12:7380-7. DOI
151. Hu Y, Li B, Jiao X, Zhang C, Dai X, Song J. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding
with sulfurized polyacrylonitrile. Adv Funct Mater 2018;28:1801010. DOI
152. Capone I, Hurlbutt K, Naylor AJ, Xiao AW, Pasta M. Effect of the particle-size distribution on the electrochemical performance of a
red phosphorus-carbon composite anode for sodium-ion batteries. Energy Fuels 2019;33:4651-8. DOI PubMed PMC
153. Xiao W, Sun Q, Banis MN, et al. Unveiling the interfacial instability of the phosphorus/carbon anode for sodium-ion batteries. ACS
Appl Mater Interf 2019;11:30763-73. DOI
154. Liu W, Ju S, Yu X. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS
Nano 2020;14:974-84. DOI PubMed
155. Fang K, Liu D, Xiang X, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection
design. Nano Energy 2020;69:104451. DOI
156. Jin H, Lu H, Wu W, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium
ion batteries. Nano Energy 2020;70:104569. DOI
157. Liu Y, Liu Q, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red
phosphorus. Nat Commun 2020;11:2520. DOI PubMed PMC
158. Subramaniyam CM, Kang MA, Li J, VahidMohammadi A, Hamedi MM. Additive-free red phosphorus/Ti C T MXene
3 2 x
nanocomposite anodes for metal-ion batteries. Energy Adv 2022;1:999-1008. DOI
159. Zhu Z, Pei Z, Liu B, et al. Hierarchical ion/electron networks enable efficient red phosphorus anode with high mass loading for
sodium ion batteries. Adv Funct Mater 2022;32:2110444. DOI
160. Kaur H, Konkena B, Gabbett C, et al. Amorphous 2D-nanoplatelets of red phosphorus obtained by liquid-phase exfoliation yield high
areal capacity Na-ion battery anodes. Adv Energy Mater 2023;13:2203013. DOI
161. Li Z, Zhao H. Recent developments of phosphorus-based anodes for sodium ion batteries. J Mater Chem A 2018;6:24013-30. DOI
162. Chang G, Zhao Y, Dong L, et al. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J
Mater Chem A 2020;8:4996-5048. DOI
163. Zhou J, Shi Q, Ullah S, et al. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Adv Funct
Mater 2020;30:2004648. DOI
164. Shen H, Han X, Zheng X, et al. One-step electrochemical synthesis and optimization of Sb-Co-P alloy anode for sodium ion battery.
Electrochim Acta 2023;438:141529. DOI
165. Zhang N, Chen X, Zhao J, He P, Ding X. Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes.
Electrochim Acta 2023;439:141602. DOI