Page 132 - Read Online
P. 132

Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06   Page 63 of 64

                    2023;9:2012-35.  DOI  PubMed  PMC
               287.      Dai Z, Mani U, Tan HT, Yan Q. Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods
                    2017;1:1700098.  DOI
               288.      Jing WT, Yang CC, Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J Mater Chem A
                    2020;8:2913-33.  DOI
               289.      Lin K, Liu Q, Zhou Y, et al. Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-
                    structured SIBs: combined theoretical and experimental study. Chem Eng J 2023;463:142464.  DOI
               290.      Li F, Yu X, Tang K, Peng X, Zhao Q, Li B. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for
                    the advanced sodium-ion batteries. J Appl Electrochem 2023;53:9-18.  DOI
               291.      Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon
                    anode and a layered oxide framework cathode. Phys Chem Chem Phys 2013;15:3827-33.  DOI
               292.      Liu M, Yang Z, Shen Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy
                    sodium ion batteries. J Mater Chem A 2021;9:5639-47.  DOI
               293.      He W, Chen K, Pathak R, et al. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries.
                    Chem Eng J 2021;414:128638.  DOI
               294.      Chen S, Ao Z, Sun B, Xie X, Wang G. Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-
                    ion batteries. Energy Stor Mater 2016;5:180-90.  DOI
               295.      Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion
                    batteries. Adv Funct Mater 2015;25:214-20.  DOI
               296.      Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode
                    materials for Na-ion batteries. ACS Nano 2014;8:11824-35.  DOI  PubMed
               297.      Zhu Y, Yao Q, Shao R, et al. Microsized gray Tin as a high-rate and long-life anode material for advanced sodium-ion batteries.
                    Nano Lett 2022;22:7976-83.  DOI
               298.      Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous Tin created by tuning the redox potential acts as an advanced electrode for
                    sodium-ion batteries. ChemSusChem 2018;11:3376-81.  DOI
               299.      Chen B, Zhang H, Liang M, et al. NaCl-pinned antimony nanoparticles combined with ion-shuttle-induced graphitized 3D carbon to
                    boost sodium storage. Cell Rep Phys Sci 2022;3:100891.  DOI
               300.      Li X, Xiao S, Niu X, Chen JS, Yu Y. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium
                    storage. Adv Funct Mater 2021;31:2104798.  DOI
               301.      Ni J, Li X, Sun M, et al. Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage.  ACS Nano
                    2020;14:9117-24.  DOI
               302.      Zhang R, Yang Y, Guo L, Luo Y. A fast and high-efficiency electrochemical exfoliation strategy towards antimonene/carbon
                    composites for selective lubrication and sodium-ion storage applications. Phys Chem Chem Phys 2022;24:4957-65.  DOI
               303.      Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-
                    capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93.  DOI
               304.      Gao H, Niu J, Zhang C, Peng Z, Zhang Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion
                    batteries. ACS Nano 2018;12:3568-77.  DOI
               305.      Li W, Han C, Gu Q, Chou S, Liu HK, Dou SX. Three-dimensional electronic network assisted by TiN conductive pillars and
                    chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano 2020;14:4609-17.  DOI
               306.      Wu Y, Xing F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous
                    carbon tubes leading to superior sodium storage performance. J Mater Chem A 2019;7:8581-8.  DOI
               307.      Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for
                    lithium/sodium-ion half/full batteries. ACS Nano 2019;13:13513-23.  DOI
               308.      Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for
                    sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.  DOI
               309.      Zhu L, Xu K, Fang Y, et al. Se-induced fibrous nano red P with superior conductivity for sodium batteries. Adv Funct Mater
                    2023;33:2302444.  DOI
               310.      Guo X, Zhang W, Zhang J, et al. Boosting sodium storage in two-dimensional Phosphorene/Ti C T MXene nanoarchitectures with
                                                                                  3  2 x
                    stable fluorinated interphase. ACS Nano 2020;14:3651-9.  DOI
               311.      Sun J, Lee HW, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat
                    Nanotechnol 2015;10:980-5.  DOI
               312.      Shuai H, Ge P, Hong W, et al. Electrochemically exfoliated phosphorene-graphene hybrid for sodium-ion batteries. Small Methods
                    2019;3:1800328.  DOI
               313.      Liu Y, Liu Q, Zhang A, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion
                    battery anodes. ACS Nano 2018;12:8323-9.  DOI
               314.      Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle
                    life sodium- and potassium-ion anodes. Adv Funct Mater 2019;29:1809195.  DOI
               315.      Xiong P, Bai P, Li A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion
                    batteries. Adv Mater 2019;31:e1904771.  DOI
   127   128   129   130   131   132   133   134   135   136   137