Page 132 - Read Online
P. 132
Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06 Page 63 of 64
2023;9:2012-35. DOI PubMed PMC
287. Dai Z, Mani U, Tan HT, Yan Q. Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods
2017;1:1700098. DOI
288. Jing WT, Yang CC, Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J Mater Chem A
2020;8:2913-33. DOI
289. Lin K, Liu Q, Zhou Y, et al. Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-
structured SIBs: combined theoretical and experimental study. Chem Eng J 2023;463:142464. DOI
290. Li F, Yu X, Tang K, Peng X, Zhao Q, Li B. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for
the advanced sodium-ion batteries. J Appl Electrochem 2023;53:9-18. DOI
291. Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon
anode and a layered oxide framework cathode. Phys Chem Chem Phys 2013;15:3827-33. DOI
292. Liu M, Yang Z, Shen Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy
sodium ion batteries. J Mater Chem A 2021;9:5639-47. DOI
293. He W, Chen K, Pathak R, et al. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries.
Chem Eng J 2021;414:128638. DOI
294. Chen S, Ao Z, Sun B, Xie X, Wang G. Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-
ion batteries. Energy Stor Mater 2016;5:180-90. DOI
295. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion
batteries. Adv Funct Mater 2015;25:214-20. DOI
296. Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode
materials for Na-ion batteries. ACS Nano 2014;8:11824-35. DOI PubMed
297. Zhu Y, Yao Q, Shao R, et al. Microsized gray Tin as a high-rate and long-life anode material for advanced sodium-ion batteries.
Nano Lett 2022;22:7976-83. DOI
298. Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous Tin created by tuning the redox potential acts as an advanced electrode for
sodium-ion batteries. ChemSusChem 2018;11:3376-81. DOI
299. Chen B, Zhang H, Liang M, et al. NaCl-pinned antimony nanoparticles combined with ion-shuttle-induced graphitized 3D carbon to
boost sodium storage. Cell Rep Phys Sci 2022;3:100891. DOI
300. Li X, Xiao S, Niu X, Chen JS, Yu Y. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium
storage. Adv Funct Mater 2021;31:2104798. DOI
301. Ni J, Li X, Sun M, et al. Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage. ACS Nano
2020;14:9117-24. DOI
302. Zhang R, Yang Y, Guo L, Luo Y. A fast and high-efficiency electrochemical exfoliation strategy towards antimonene/carbon
composites for selective lubrication and sodium-ion storage applications. Phys Chem Chem Phys 2022;24:4957-65. DOI
303. Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-
capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93. DOI
304. Gao H, Niu J, Zhang C, Peng Z, Zhang Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion
batteries. ACS Nano 2018;12:3568-77. DOI
305. Li W, Han C, Gu Q, Chou S, Liu HK, Dou SX. Three-dimensional electronic network assisted by TiN conductive pillars and
chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano 2020;14:4609-17. DOI
306. Wu Y, Xing F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous
carbon tubes leading to superior sodium storage performance. J Mater Chem A 2019;7:8581-8. DOI
307. Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for
lithium/sodium-ion half/full batteries. ACS Nano 2019;13:13513-23. DOI
308. Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for
sodium/potassium-ion batteries. Nano Energy 2018;52:1-10. DOI
309. Zhu L, Xu K, Fang Y, et al. Se-induced fibrous nano red P with superior conductivity for sodium batteries. Adv Funct Mater
2023;33:2302444. DOI
310. Guo X, Zhang W, Zhang J, et al. Boosting sodium storage in two-dimensional Phosphorene/Ti C T MXene nanoarchitectures with
3 2 x
stable fluorinated interphase. ACS Nano 2020;14:3651-9. DOI
311. Sun J, Lee HW, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat
Nanotechnol 2015;10:980-5. DOI
312. Shuai H, Ge P, Hong W, et al. Electrochemically exfoliated phosphorene-graphene hybrid for sodium-ion batteries. Small Methods
2019;3:1800328. DOI
313. Liu Y, Liu Q, Zhang A, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion
battery anodes. ACS Nano 2018;12:8323-9. DOI
314. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle
life sodium- and potassium-ion anodes. Adv Funct Mater 2019;29:1809195. DOI
315. Xiong P, Bai P, Li A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion
batteries. Adv Mater 2019;31:e1904771. DOI