Page 130 - Read Online
P. 130
Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06 Page 61 of 64
sodium-ion batteries. RSC Adv 2023;13:25552-60. DOI PubMed PMC
226. Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett 2014;6:347-58. DOI PubMed
PMC
227. Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as
high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60. DOI
228. Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural engineering achieves high-performance alloying anodes for lithium and
sodium ion batteries. Small 2021;17:e2005248. DOI
229. Ma D, Li Y, Zhang P, Lin Z. Oxygen vacancy engineering in tin(IV) oxide based anode materials toward advanced sodium-ion
batteries. ChemSusChem 2018;11:3693-703. DOI
230. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion
battery alloying anodes. Small Methods 2020;4:2000218. DOI
231. Wang X, Feng B, Huang L, et al. Superior electrochemical performance of Sb-Bi alloy for sodium storage: understanding from
alloying element effects and new cause of capacity attenuation. J Power Sources 2022;520:230826. DOI
232. Zheng Y, Wei S, Shang J, Wang D, Lei C, Zhao Y. High-performance sodium-ion batteries enabled by 3D nanoflowers comprised of
ternary Sn-based dichalcogenides embedded in nitrogen and sulfur dual-doped carbon. Small 2023;19:e2303746. DOI
233. Gao H, Wang Y, Guo Z, et al. Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries.
J Energy Chem 2022;75:154-63. DOI
234. Fu R, Pan J, Wang M, et al. In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium
storage in ternary metal sulfide anode. ACS Nano 2023;17:12483-98. DOI
235. Wu J, Ihsan-ul-haq M, Chen Y, Kim J. Understanding solid electrolyte interphases: advanced characterization techniques and
theoretical simulations. Nano Energy 2021;89:106489. DOI
236. Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19. DOI
237. Yu F, Du L, Zhang G, Su F, Wang W, Sun S. Electrode engineering by atomic layer deposition for sodium-ion batteries: from
traditional to advanced batteries. Adv Funct Mater 2020;30:1906890. DOI
238. Yadav P, Shelke V, Patrike A, Shelke M. Sodium-based batteries: development, commercialization journey and new emerging
chemistries. Oxford Open Mater Sci 2023;3:itac019. DOI
239. Eddie Spence, Annie Lee; Bloomberg. Tesla rival BYD and other battery giants are betting on sodium for EVs and energy storage -
and challenging the dominance of lithium-ion. Available from: https://fortune.com/2023/11/26/battery-giants-sodium-bet-electric-
vehicles-energy-storage-lithium-ion/ [Last accessed on 1 Jul 2024].
240. Gebert F, Knott J, Gorkin R, Chou S, Dou S. Polymer electrolytes for sodium-ion batteries. Energy Stor Mater 2021;36:10-30. DOI
241. Li Y, Wu F, Li Y, et al. Ether-based electrolytes for sodium ion batteries. Chem Soc Rev 2022;51:4484-536. DOI
242. Sirengo K, Babu A, Brennan B, Pillai SC. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. J Energy
Chem 2023;81:321-38. DOI
243. Westman K, Dugas R, Jankowski P, et al. Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater 2018;1:2671-
80. DOI
244. Kulova TL, Skundin AM. Electrode/electrolyte interphases of sodium-ion batteries. Energies 2022;15:8615. DOI
245. Usui H, Domi Y, Fujiwara K, et al. Charge-discharge properties of a Sn P negative electrode in ionic liquid electrolyte for Na-ion
4 3
batteries. ACS Energy Lett 2017;2:1139-43. DOI
246. Domingues LS, de Melo HG, Martins VL. Ionic liquids as potential electrolytes for sodium-ion batteries: an overview. Phys Chem
Chem Phys 2023;25:12650-67. DOI PubMed
247. Ahmad H, Kubra KT, Butt A, Nisar U, Iftikhar FJ, Ali G. Recent progress, challenges, and perspectives in the development of solid-
state electrolytes for sodium batteries. J Power Sources 2023;581:233518. DOI
248. Gandi S, Chidambara Swamy Vaddadi VS, Sripada Panda SS, et al. Recent progress in the development of glass and glass-ceramic
cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: a review. J Power Sources
2022;521:230930. DOI
249. Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem Soc Rev 2018;47:736-851. DOI
PubMed
250. Zhou L, Cao Z, Wahyudi W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and
potassium ion batteries. ACS Energy Lett 2020;5:766-76. DOI
251. Zhang J, Gai J, Song K, Chen W. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.
Cell Rep Phys Sci 2022;3:100868. DOI
252. Li Z, Wu Z, Wu S, et al. Designing advanced polymeric binders for high-performance rechargeable sodium batteries. Adv Funct
Mater 2024;34:2307261. DOI
253. Chen H, Zhang S, Liu G, Yan C. Polymeric binders in modern metal-ion batteries. In: Zhang S, Lu J, editors. Functional polymers for
metal-ion batteries. New York: Wiley; 2023. pp. 61-117. DOI
254. Li RR, Yang Z, He XX, et al. Binders for sodium-ion batteries: progress, challenges and strategies. Chem Commun 2021;57:12406-
16. DOI
255. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage - the
transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 2018;11:3096-127. DOI