Page 130 - Read Online
P. 130

Rehman et al. Energy Mater 2024;4:400068  https://dx.doi.org/10.20517/energymater.2024.06   Page 61 of 64

                    sodium-ion batteries. RSC Adv 2023;13:25552-60.  DOI  PubMed  PMC
               226.      Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett 2014;6:347-58.  DOI  PubMed
                    PMC
               227.      Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as
                    high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60.  DOI
               228.      Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural engineering achieves high-performance alloying anodes for lithium and
                    sodium ion batteries. Small 2021;17:e2005248.  DOI
               229.      Ma D, Li Y, Zhang P, Lin Z. Oxygen vacancy engineering in tin(IV) oxide based anode materials toward advanced sodium-ion
                    batteries. ChemSusChem 2018;11:3693-703.  DOI
               230.      Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion
                    battery alloying anodes. Small Methods 2020;4:2000218.  DOI
               231.      Wang X, Feng B, Huang L, et al. Superior electrochemical performance of Sb-Bi alloy for sodium storage: understanding from
                    alloying element effects and new cause of capacity attenuation. J Power Sources 2022;520:230826.  DOI
               232.      Zheng Y, Wei S, Shang J, Wang D, Lei C, Zhao Y. High-performance sodium-ion batteries enabled by 3D nanoflowers comprised of
                    ternary Sn-based dichalcogenides embedded in nitrogen and sulfur dual-doped carbon. Small 2023;19:e2303746.  DOI
               233.      Gao H, Wang Y, Guo Z, et al. Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries.
                    J Energy Chem 2022;75:154-63.  DOI
               234.      Fu R, Pan J, Wang M, et al. In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium
                    storage in ternary metal sulfide anode. ACS Nano 2023;17:12483-98.  DOI
               235.      Wu J, Ihsan-ul-haq M, Chen Y, Kim J. Understanding solid electrolyte interphases: advanced characterization techniques and
                    theoretical simulations. Nano Energy 2021;89:106489.  DOI
               236.      Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.  DOI
               237.      Yu F, Du L, Zhang G, Su F, Wang W, Sun S. Electrode engineering by atomic layer deposition for sodium-ion batteries: from
                    traditional to advanced batteries. Adv Funct Mater 2020;30:1906890.  DOI
               238.      Yadav P, Shelke V, Patrike A, Shelke M. Sodium-based batteries: development, commercialization journey and new emerging
                    chemistries. Oxford Open Mater Sci 2023;3:itac019.  DOI
               239.      Eddie Spence, Annie Lee; Bloomberg. Tesla rival BYD and other battery giants are betting on sodium for EVs and energy storage -
                    and challenging the dominance of lithium-ion. Available from: https://fortune.com/2023/11/26/battery-giants-sodium-bet-electric-
                    vehicles-energy-storage-lithium-ion/ [Last accessed on 1 Jul 2024].
               240.      Gebert F, Knott J, Gorkin R, Chou S, Dou S. Polymer electrolytes for sodium-ion batteries. Energy Stor Mater 2021;36:10-30.  DOI
               241.      Li Y, Wu F, Li Y, et al. Ether-based electrolytes for sodium ion batteries. Chem Soc Rev 2022;51:4484-536.  DOI
               242.      Sirengo K, Babu A, Brennan B, Pillai SC. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. J Energy
                    Chem 2023;81:321-38.  DOI
               243.      Westman K, Dugas R, Jankowski P, et al. Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater 2018;1:2671-
                    80.  DOI
               244.      Kulova TL, Skundin AM. Electrode/electrolyte interphases of sodium-ion batteries. Energies 2022;15:8615.  DOI
               245.      Usui H, Domi Y, Fujiwara K, et al. Charge-discharge properties of a Sn P  negative electrode in ionic liquid electrolyte for Na-ion
                                                                   4 3
                    batteries. ACS Energy Lett 2017;2:1139-43.  DOI
               246.      Domingues LS, de Melo HG, Martins VL. Ionic liquids as potential electrolytes for sodium-ion batteries: an overview. Phys Chem
                    Chem Phys 2023;25:12650-67.  DOI  PubMed
               247.      Ahmad H, Kubra KT, Butt A, Nisar U, Iftikhar FJ, Ali G. Recent progress, challenges, and perspectives in the development of solid-
                    state electrolytes for sodium batteries. J Power Sources 2023;581:233518.  DOI
               248.      Gandi S, Chidambara Swamy Vaddadi VS, Sripada Panda SS, et al. Recent progress in the development of glass and glass-ceramic
                    cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: a review. J Power Sources
                    2022;521:230930.  DOI
               249.      Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem Soc Rev 2018;47:736-851.  DOI
                    PubMed
               250.      Zhou L, Cao Z, Wahyudi W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and
                    potassium ion batteries. ACS Energy Lett 2020;5:766-76.  DOI
               251.      Zhang J, Gai J, Song K, Chen W. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.
                    Cell Rep Phys Sci 2022;3:100868.  DOI
               252.      Li Z, Wu Z, Wu S, et al. Designing advanced polymeric binders for high-performance rechargeable sodium batteries. Adv Funct
                    Mater 2024;34:2307261.  DOI
               253.      Chen H, Zhang S, Liu G, Yan C. Polymeric binders in modern metal-ion batteries. In: Zhang S, Lu J, editors. Functional polymers for
                    metal-ion batteries. New York: Wiley; 2023. pp. 61-117.  DOI
               254.      Li RR, Yang Z, He XX, et al. Binders for sodium-ion batteries: progress, challenges and strategies. Chem Commun 2021;57:12406-
                    16.  DOI
               255.      Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage - the
                    transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 2018;11:3096-127.  DOI
   125   126   127   128   129   130   131   132   133   134   135