Page 125 - Read Online
P. 125
Page 56 of 64 Rehman et al. Energy Mater 2024;4:400068 https://dx.doi.org/10.20517/energymater.2024.06
77. Ma D, Li Y, Mi H, et al. Robust SnO nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance
2-x
for advanced sodium-ion batteries. Angew Chem Int Ed 2018;57:8901-5. DOI
78. Fan L, Song X, Xiong D, Li X. Nitrogen-doping of graphene enhancing sodium storage of SnO anode. J Electroanal Chem
2
2019;833:340-8. DOI
79. Wang Y, Jin Y, Zhao C, Pan E, Jia M. 1D ultrafine SnO nanorods anchored on 3D graphene aerogels with hierarchical porous
2
structures for high-performance lithium/sodium storage. J Colloid Interface Sci 2018;532:352-62. DOI
80. Demir E, Aydin M, Arie AA, Demir-cakan R. Apricot shell derived hard carbons and their tin oxide composites as anode materials
for sodium-ion batteries. J Alloys Compd 2019;788:1093-102. DOI
81. Choi IY, Jo C, Lim WG, et al. Amorphous Tin oxide nanohelix structure based electrode for highly reversible Na-ion batteries. ACS
Nano 2019;13:6513-21. DOI
82. Han B, Zhang W, Gao D, et al. Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior
lithium and sodium ion storage. J Power Sources 2020;449:227564. DOI
83. Narsimulu D, Nagaraju G, Chandra Sekhar S, Ramulu B, Su Yu J. Three-dimensional porous SnO /carbon cloth electrodes for high-
2
performance lithium- and sodium-ion batteries. Appl Surf Sci 2021;538:148033. DOI
84. Chen Y, Sun Y, Geng M, et al. SnO /MXene nanoparticles as a superior high-rate and cycling-stable anode for sodium ion batteries.
2
Mater Lett 2021;304:130704. DOI
85. Wu YQ, Yang HX, Yang Y, et al. SnS /Co S hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion
3 4
2
storage. Small 2019;15:e1903873. DOI
86. He X, Liu J, Kang B, et al. Preparation of SnS /enteromorpha prolifera derived carbon composite and its performance of sodium-ion
2
batteries. J Phys Chem Solids 2021;152:109976. DOI
87. Ding J, Tang C, Zhu G, et al. Integrating SnS quantum dots with nitrogen-doped Ti C T MXene nanosheets for robust sodium
2 3 2 x
storage performance. ACS Appl Energy Mater 2021;4:846-54. DOI
88. Jiang Y, Liu G, Lu S, et al. A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material for
high-performance sodium-ion batteries. J Colloid Interface Sci 2022;611:215-23. DOI
89. Li Z, Zheng J, Xiao M, et al. Three-dimensional 1T-SnS wrapped with graphene for sodium-ion battery anodes with highly
2
reversible sodiation/desodiation. Scr Mater 2022;211:114500. DOI
90. Li Q, Yu F, Cui Y, Wang J, Zhao Y, Peng J. Multilayer SnS-SnS @GO heterostructures nanosheet as anode material for Sodium ion
2
battery with high capacity and stability. J Alloys Compd 2023;937:168392. DOI
91. Yang X, Miao Z, Zhong Q, et al. ZnS/SnS heterostructures encapsulated in N-doped carbon nanofibers for high-performance alkali
2
metal-ion batteries. ACS Appl Mater Interfaces 2023;15:46881-94. DOI
92. Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y. N-graphene motivated SnO @SnS heterostructure quantum dots for high
2 2
performance lithium/sodium storage. Energy Stor Mater 2019;20:225-33. DOI
93. Ou X, Cao L, Liang X, et al. Fabrication of SnS /Mn SnS /Carbon heterostructures for sodium-ion batteries with high initial
2
4
2
coulombic efficiency and cycling stability. ACS Nano 2019;13:3666-76. DOI
94. Zhang F, Shen Y, Shao M, et al. SnSe nanoparticles chemically embedded in a carbon shell for high-rate sodium-ion storage. ACS
2
Appl Mater Interfaces 2020;12:2346-53. DOI
95. Yang W, Chen Y, Yin X, Lai X, Wang J, Jian J. SnSe nanosheet array on carbon cloth as a high-capacity anode for sodium-ion
batteries. ACS Appl Mater Interfaces 2023;15:42811-22. DOI
96. Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe /ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage.
2
Adv Energy Mater 2020;10:2000741. DOI
97. Fan T, Wu Y, Li J, et al. Sheet-to-layer structure of SnSe /MXene composite materials for advanced sodium ion battery anodes. New
2
J Chem 2021;45:1944-52. DOI
98. Wang W, Hu L, Li L, et al. Constructing a rapid ion and electron migration channels in MoSe /SnSe @C 2D heterostructures for
2
2
high-efficiency sodium-ion half/full batteries. Electrochim Acta 2023;449:142239. DOI
99. Kong Z, Liang Z, Huang M, et al. Yolk-shell tin phosphides composites as superior reversibility and stability anodes for lithium/
sodium ion batteries. J Alloys Compd 2023;930:167328. DOI
100. Liu C, Yang X, Liu J, Ye X. Theoretical prediction of two-dimensional SnP as a promising anode material for Na-ion batteries. ACS
3
Appl Energy Mater 2018;1:3850-9. DOI
101. Kong Z, Yao X, Shao Y, et al. Sn P nanoplate/reduced graphene oxide composites as anode materials for lithium-/sodium-ion
x y
batteries. ACS Appl Nano Mater 2021;4:12335-45. DOI
102. Pan E, Jin Y, Zhao C, et al. Mesoporous Sn P -graphene aerogel composite as a high-performance anode in sodium ion batteries.
4 3
Appl Surf Sci 2019;475:12-9. DOI
103. Pan E, Jin Y, Zhao C, et al. Conformal hollow carbon sphere coated on Sn P microspheres as high-rate and cycle-stable anode
4 3
materials with superior sodium storage capability. ACS Appl Energy Mater 2019;2:1756-64. DOI
104. Zhang J, Wang W, Li B. Enabling high sodium storage performance of micron-sized Sn P anode via diglyme-derived solid
4 3
electrolyte interphase. Chem Eng J 2020;392:123810. DOI
105. Ran L, Luo B, Gentle IR, et al. Biomimetic Sn P anchored on carbon nanotubes as an anode for high-performance sodium-ion
4 3
batteries. ACS Nano 2020;14:8826-37. DOI
106. Fan W, Gao Y, Hui Q, et al. A closed-ended MXene armor on hollow Sn P nanospheres for ultrahigh-rate and stable sodium storage.
4 3