Page 48 - Read Online
P. 48

Page 32 of 35             Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46

               89.       Whiteley JM, Woo JH, Hu E, Nam K, Lee S. Empowering the lithium metal battery through a silicon-based superionic conductor. J
                    Electrochem Soc 2014;161:A1812-7.  DOI
               90.       Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-
                    solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.  DOI
               91.       Sicolo S, Fingerle M, Hausbrand R, Albe K. Interfacial instability of amorphous lipon against lithium: a combined density functional
                    theory and spectroscopic study. J Power Sources 2017;354:124-33.  DOI
               92.       Lei D, Shi K, Ye H, et al. Progress and perspective of solid-state lithium-sulfur batteries. Adv Funct Mater 2018;28:1707570.  DOI
               93.       Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li
                                                                                                         7
                    La Zr O . Chem Mater 2017;29:7961-8.  DOI
                      3
                         12
                        2
               94.       Scheers J, Fantini S, Johansson P. A review of electrolytes for lithium-sulphur batteries. J Power Sources 2014;255:204-18.  DOI
               95.       Jung YS, Oh DY, Nam YJ, Park KH. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide
                    solid electrolytes. Isr J Chem 2015;55:472-85.  DOI
               96.       Cheng X, Zhao C, Yao Y, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-
                    metal anodes. Chem 2019;5:74-96.  DOI
               97.       Pan H, Cheng Z, He P, Zhou H. A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels
                    2020;34:11942-61.  DOI
               98.       Sumita M, Tanaka Y, Ikeda M, Ohno T. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state
                    lithium ion batteries. J Phys Chem C 2016;120:13332-9.  DOI
               99.       Xu R, Wu Z, Zhang S, et al. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li  Si  P  S  Cl
                                                                                             9.54  1.74 1.44 11.7  0.3
                    solid electrolyte. Chemistry 2017;23:13950-6.  DOI  PubMed
               100.      Liu Y, He P, Zhou H. Rechargeable solid-state Li-Air and Li-S batteries: materials, construction, and challenges. Adv Energy Mater
                    2018;8:1701602.  DOI
               101.      Riphaus N, Stiaszny B, Beyer H, Indris S, Gasteiger HA, Sedlmaier SJ. Editors’ choice - understanding chemical stability issues
                    between different solid electrolytes in all-solid-state batteries. J Electrochem Soc 2019;166:A975-83.  DOI
               102.      Marceau H, Kim C, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of
                    lithium/sulfur cells using all solid-state polymer electrolyte. J Power Sources 2016;319:247-54.  DOI
               103.      Chung S, Manthiram A. A Li S-TiS -electrolyte composite for stable Li S-based lithium-sulfur batteries. Adv Energy Mater
                                        2    2                        2
                    2019;9:1901397.  DOI  PubMed
               104.      Xiang Y, Li X, Cheng Y, Sun X, Yang Y. Advanced characterization techniques for solid state lithium battery research. Materials
                    Today 2020;36:139-57.  DOI
               105.      Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M. Interface layer formation in solid polymer electrolyte lithium
                    batteries: an XPS study. J Mater Chem A 2014;2:7256-64.  DOI
               106.      Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery.
                    Green Chem 2016;18:3796-803.  DOI
               107.      Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem
                    Int Ed 2017;56:753-6.  DOI  PubMed
               108.      Kim J. Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries. Mater Lett 2017;187:40-3.  DOI
               109.      Hartmann P, Leichtweiss T, Busche MR, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of
                    mixed conducting interphases (MCI) on Solid electrolytes. J Phys Chem C 2013;117:21064-74.  DOI
               110.      Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics
                    between a lithium metal anode and highly crystalline Li P S  solid electrolyte. Solid State Ionics 2016;286:24-33.  DOI
                                                        7 3 11
               111.      Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO Surface modification of garnet-based solid-state electrolyte for lithium
                    metal anodes. Nano Lett 2017;17:565-71.  DOI  PubMed
               112.      Xu B, Li W, Duan H, et al. Li PO -added garnet-type Li La Zr Ta O  for Li-dendrite suppression. J Power Sources 2017;354:68-
                                       3  4             6.5  3  1.5  0.5  12
                    73.  DOI
               113.      Sharafi A, Haslam CG, Kerns RD, Wolfenstine J, Sakamoto J. Controlling and correlating the effect of grain size with the mechanical
                    and electrochemical properties of Li La Zr O  solid-state electrolyte. J Mater Chem A 2017;5:21491-504.  DOI
                                             3
                                               2
                                           7
                                                 12
               114.      Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO . J Am
                                                                                                     2
                    Ceram Soc 2017;100:2832-9.  DOI
               115.      Nagao M, Hayashi A, Tatsumisago M, et al. Li S nanocomposites underlying high-capacity and cycling stability in all-solid-state
                                                   2
                    lithium-sulfur batteries. J Power Sources 2015;274:471-6.  DOI
               116.      Xu R, Xia X, Li S, Zhang S, Wang X, Tu J. All-solid-state lithium-sulfur batteries based on a newly designed Li P Mn S  I
                                                                                               7 2.9  0.1 10.7 0.3
                    superionic conductor. J Mater Chem A 2017;5:6310-7.  DOI
               117.      Sheng O, Jin C, Luo J, et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state
                    lithium-sulfur batteries. J Mater Chem A 2017;5:12934-42.  DOI
               118.      Zhu P, Yan C, Zhu J, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-
                    state lithium-sulfur batteries. Energy Stor Mater 2019;17:220-5.  DOI
               119.      Shin M, Gewirth AA. Incorporating solvate and solid electrolytes for all-solid-state Li S batteries with high capacity and long cycle
                                                                            2
                    life. Adv Energy Mater 2019;9:1900938.  DOI
   43   44   45   46   47   48   49   50   51   52   53