Page 48 - Read Online
P. 48
Page 32 of 35 Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46
89. Whiteley JM, Woo JH, Hu E, Nam K, Lee S. Empowering the lithium metal battery through a silicon-based superionic conductor. J
Electrochem Soc 2014;161:A1812-7. DOI
90. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-
solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66. DOI
91. Sicolo S, Fingerle M, Hausbrand R, Albe K. Interfacial instability of amorphous lipon against lithium: a combined density functional
theory and spectroscopic study. J Power Sources 2017;354:124-33. DOI
92. Lei D, Shi K, Ye H, et al. Progress and perspective of solid-state lithium-sulfur batteries. Adv Funct Mater 2018;28:1707570. DOI
93. Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li
7
La Zr O . Chem Mater 2017;29:7961-8. DOI
3
12
2
94. Scheers J, Fantini S, Johansson P. A review of electrolytes for lithium-sulphur batteries. J Power Sources 2014;255:204-18. DOI
95. Jung YS, Oh DY, Nam YJ, Park KH. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide
solid electrolytes. Isr J Chem 2015;55:472-85. DOI
96. Cheng X, Zhao C, Yao Y, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-
metal anodes. Chem 2019;5:74-96. DOI
97. Pan H, Cheng Z, He P, Zhou H. A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels
2020;34:11942-61. DOI
98. Sumita M, Tanaka Y, Ikeda M, Ohno T. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state
lithium ion batteries. J Phys Chem C 2016;120:13332-9. DOI
99. Xu R, Wu Z, Zhang S, et al. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li Si P S Cl
9.54 1.74 1.44 11.7 0.3
solid electrolyte. Chemistry 2017;23:13950-6. DOI PubMed
100. Liu Y, He P, Zhou H. Rechargeable solid-state Li-Air and Li-S batteries: materials, construction, and challenges. Adv Energy Mater
2018;8:1701602. DOI
101. Riphaus N, Stiaszny B, Beyer H, Indris S, Gasteiger HA, Sedlmaier SJ. Editors’ choice - understanding chemical stability issues
between different solid electrolytes in all-solid-state batteries. J Electrochem Soc 2019;166:A975-83. DOI
102. Marceau H, Kim C, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of
lithium/sulfur cells using all solid-state polymer electrolyte. J Power Sources 2016;319:247-54. DOI
103. Chung S, Manthiram A. A Li S-TiS -electrolyte composite for stable Li S-based lithium-sulfur batteries. Adv Energy Mater
2 2 2
2019;9:1901397. DOI PubMed
104. Xiang Y, Li X, Cheng Y, Sun X, Yang Y. Advanced characterization techniques for solid state lithium battery research. Materials
Today 2020;36:139-57. DOI
105. Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M. Interface layer formation in solid polymer electrolyte lithium
batteries: an XPS study. J Mater Chem A 2014;2:7256-64. DOI
106. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery.
Green Chem 2016;18:3796-803. DOI
107. Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem
Int Ed 2017;56:753-6. DOI PubMed
108. Kim J. Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries. Mater Lett 2017;187:40-3. DOI
109. Hartmann P, Leichtweiss T, Busche MR, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of
mixed conducting interphases (MCI) on Solid electrolytes. J Phys Chem C 2013;117:21064-74. DOI
110. Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics
between a lithium metal anode and highly crystalline Li P S solid electrolyte. Solid State Ionics 2016;286:24-33. DOI
7 3 11
111. Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO Surface modification of garnet-based solid-state electrolyte for lithium
metal anodes. Nano Lett 2017;17:565-71. DOI PubMed
112. Xu B, Li W, Duan H, et al. Li PO -added garnet-type Li La Zr Ta O for Li-dendrite suppression. J Power Sources 2017;354:68-
3 4 6.5 3 1.5 0.5 12
73. DOI
113. Sharafi A, Haslam CG, Kerns RD, Wolfenstine J, Sakamoto J. Controlling and correlating the effect of grain size with the mechanical
and electrochemical properties of Li La Zr O solid-state electrolyte. J Mater Chem A 2017;5:21491-504. DOI
3
2
7
12
114. Xia W, Xu B, Duan H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO . J Am
2
Ceram Soc 2017;100:2832-9. DOI
115. Nagao M, Hayashi A, Tatsumisago M, et al. Li S nanocomposites underlying high-capacity and cycling stability in all-solid-state
2
lithium-sulfur batteries. J Power Sources 2015;274:471-6. DOI
116. Xu R, Xia X, Li S, Zhang S, Wang X, Tu J. All-solid-state lithium-sulfur batteries based on a newly designed Li P Mn S I
7 2.9 0.1 10.7 0.3
superionic conductor. J Mater Chem A 2017;5:6310-7. DOI
117. Sheng O, Jin C, Luo J, et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state
lithium-sulfur batteries. J Mater Chem A 2017;5:12934-42. DOI
118. Zhu P, Yan C, Zhu J, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-
state lithium-sulfur batteries. Energy Stor Mater 2019;17:220-5. DOI
119. Shin M, Gewirth AA. Incorporating solvate and solid electrolytes for all-solid-state Li S batteries with high capacity and long cycle
2
life. Adv Energy Mater 2019;9:1900938. DOI