Page 50 - Read Online
P. 50

Page 34 of 35             Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46

                    solid-state lithium secondary batteries. Electrochim Acta 2011;56:4243-7.  DOI
               150.      Hao Y, Wang S, Xu F, et al. A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl
                    Mater Interfaces 2017;9:33735-9.  DOI  PubMed
               151.      Nagao M, Imade Y, Narisawa H, et al. Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous
                    carbon electrodes. J Power Sources 2013;243:60-4.  DOI
               152.      Zhu Y, Li J, Liu J. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J
                    Power Sources 2017;351:17-25.  DOI
               153.      Zhang Q, Wan H, Liu G, Ding Z, Mwizerwa JP, Yao X. Rational design of multi-channel continuous electronic/ionic conductive
                    networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 2019;57:771-82.
                    DOI
               154.      Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions. J Power
                    Sources 2016;329:268-72.  DOI
               155.      Hou L, Yuan H, Zhao C, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-
                    sulfur batteries. Energy Stor Mater 2020;25:436-42.  DOI
               156.      Mo Y, Ong SP, Ceder G. First principles study of the Li GeP S  lithium super ionic conductor material. Chem Mater 2012;24:15-7.
                                                        10  2 12
                    DOI
               157.      Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal.
                    Solid State Ionics 2014;262:151-4.  DOI
               158.      Fu KK, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state
                    electrolyte/metallic Li interface. Sci Adv 2017;3:e1601659.  DOI  PubMed  PMC
               159.      Sakuma M, Suzuki K, Hirayama M, Kanno R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries
                    incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016;285:101-5.  DOI
               160.      Yang C, Xie H, Ping W, et al. An Electron/Ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-
                    metal batteries. Adv Mater 2019;31:e1804815.  DOI  PubMed
               161.      Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface
                    modification with gold thin films. J Power Sources 2016;309:27-32.  DOI
               162.      Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun
                    2019;10:900.  DOI  PubMed  PMC
               163.      Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-
                    9.  DOI  PubMed
               164.      Cheng Q, Li A, Li N, et al. Stabilizing solid electrolyte-anode interface in li-metal batteries by boron nitride-based nanocomposite
                    coating. Joule 2019;3:1510-22.  DOI
               165.      Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by
                    a germanium layer. Adv Mater 2017;29:1606042.  DOI  PubMed
               166.      Luo W, Gong Y, Zhu Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem
                    Soc 2016;138:12258-62.
               167.      Shao Y, Wang H, Gong Z, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state li
                    batteries. ACS Energy Lett 2018;3:1212-8.  DOI
               168.      Sun B, Jin Y, Lang J, Liu K, Fang M, Wu H. A painted layer for high-rate and high-capacity solid-state lithium-metal batteries. Chem
                    Commun 2019;55:6704-7.  DOI  PubMed
               169.      Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li GeP S  electrolyte and lithium anode for all-solid-state lithium
                                                              10
                                                                  2 12
                    batteries with ultralong cycle life. ACS Appl Mater Interfaces 2018;10:2556-65.  DOI  PubMed
               170.      Kızılaslan A, Akbulut H. Assembling all-solid-state lithium-sulfur batteries with Li N-protected anodes. Chempluschem 2019;84:183-
                                                                         3
                    9.  DOI  PubMed
               171.      Li S, Ruan J, Jiang R, et al. Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation. Energy Stor Mater
                    2022;48:283-9.  DOI
               172.      Zhong L, Wang S, Xiao M, et al. Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S
                    battery. Energy Stor Mater 2021;41:563-70.  DOI
               173.      Zhang Z, Zhao Y, Chen S, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial
                    compatibility and ultralong cycle life. J Mater Chem A 2017;5:16984-93.  DOI
               174.      Yang H, Zhang Y, Tennenbaum MJ, et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer
                    lithium metal batteries. ACS Appl Mater Interfaces 2019;11:27906-12.  DOI  PubMed
               175.      Yu Q, Han D, Lu Q, et al. Constructing effective interfaces for Li Al Ge (PO )  pellets to achieve room-temperature hybrid solid-
                                                              1.5  0.5  1.5  4 3
                    state lithium metal batteries. ACS Appl Mater Interfaces 2019;11:9911-8.  DOI  PubMed
               176.      Zhou F, Li Z, Lu YY, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries.
                    Nat Commun 2019;10:2482.
               177.      Yuan H, Nan H, Zhao C, et al. Cover feature: slurry-coated sulfur/sulfide cathode with li metal anode for all-solid-state lithium-sulfur
                    pouch cells. Batteries Supercaps 2020;3:568-568.  DOI
               178.      Jafta CJ, Prévost S, He L, et al. Quantifying the chemical, electrochemical heterogeneity and spatial distribution of (poly) sulfide
   45   46   47   48   49   50   51   52   53   54   55