Page 50 - Read Online
P. 50
Page 34 of 35 Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46
solid-state lithium secondary batteries. Electrochim Acta 2011;56:4243-7. DOI
150. Hao Y, Wang S, Xu F, et al. A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl
Mater Interfaces 2017;9:33735-9. DOI PubMed
151. Nagao M, Imade Y, Narisawa H, et al. Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous
carbon electrodes. J Power Sources 2013;243:60-4. DOI
152. Zhu Y, Li J, Liu J. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J
Power Sources 2017;351:17-25. DOI
153. Zhang Q, Wan H, Liu G, Ding Z, Mwizerwa JP, Yao X. Rational design of multi-channel continuous electronic/ionic conductive
networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 2019;57:771-82.
DOI
154. Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions. J Power
Sources 2016;329:268-72. DOI
155. Hou L, Yuan H, Zhao C, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-
sulfur batteries. Energy Stor Mater 2020;25:436-42. DOI
156. Mo Y, Ong SP, Ceder G. First principles study of the Li GeP S lithium super ionic conductor material. Chem Mater 2012;24:15-7.
10 2 12
DOI
157. Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal.
Solid State Ionics 2014;262:151-4. DOI
158. Fu KK, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state
electrolyte/metallic Li interface. Sci Adv 2017;3:e1601659. DOI PubMed PMC
159. Sakuma M, Suzuki K, Hirayama M, Kanno R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries
incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016;285:101-5. DOI
160. Yang C, Xie H, Ping W, et al. An Electron/Ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-
metal batteries. Adv Mater 2019;31:e1804815. DOI PubMed
161. Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface
modification with gold thin films. J Power Sources 2016;309:27-32. DOI
162. Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun
2019;10:900. DOI PubMed PMC
163. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-
9. DOI PubMed
164. Cheng Q, Li A, Li N, et al. Stabilizing solid electrolyte-anode interface in li-metal batteries by boron nitride-based nanocomposite
coating. Joule 2019;3:1510-22. DOI
165. Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by
a germanium layer. Adv Mater 2017;29:1606042. DOI PubMed
166. Luo W, Gong Y, Zhu Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem
Soc 2016;138:12258-62.
167. Shao Y, Wang H, Gong Z, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state li
batteries. ACS Energy Lett 2018;3:1212-8. DOI
168. Sun B, Jin Y, Lang J, Liu K, Fang M, Wu H. A painted layer for high-rate and high-capacity solid-state lithium-metal batteries. Chem
Commun 2019;55:6704-7. DOI PubMed
169. Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li GeP S electrolyte and lithium anode for all-solid-state lithium
10
2 12
batteries with ultralong cycle life. ACS Appl Mater Interfaces 2018;10:2556-65. DOI PubMed
170. Kızılaslan A, Akbulut H. Assembling all-solid-state lithium-sulfur batteries with Li N-protected anodes. Chempluschem 2019;84:183-
3
9. DOI PubMed
171. Li S, Ruan J, Jiang R, et al. Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation. Energy Stor Mater
2022;48:283-9. DOI
172. Zhong L, Wang S, Xiao M, et al. Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S
battery. Energy Stor Mater 2021;41:563-70. DOI
173. Zhang Z, Zhao Y, Chen S, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial
compatibility and ultralong cycle life. J Mater Chem A 2017;5:16984-93. DOI
174. Yang H, Zhang Y, Tennenbaum MJ, et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer
lithium metal batteries. ACS Appl Mater Interfaces 2019;11:27906-12. DOI PubMed
175. Yu Q, Han D, Lu Q, et al. Constructing effective interfaces for Li Al Ge (PO ) pellets to achieve room-temperature hybrid solid-
1.5 0.5 1.5 4 3
state lithium metal batteries. ACS Appl Mater Interfaces 2019;11:9911-8. DOI PubMed
176. Zhou F, Li Z, Lu YY, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries.
Nat Commun 2019;10:2482.
177. Yuan H, Nan H, Zhao C, et al. Cover feature: slurry-coated sulfur/sulfide cathode with li metal anode for all-solid-state lithium-sulfur
pouch cells. Batteries Supercaps 2020;3:568-568. DOI
178. Jafta CJ, Prévost S, He L, et al. Quantifying the chemical, electrochemical heterogeneity and spatial distribution of (poly) sulfide