Page 46 - Read Online
P. 46

Page 30 of 35             Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46

               27.       Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 2016:1.  DOI
               28.       Ribes M, Barrau B, Souquet J. Sulfide glasses: glass forming region, structure and ionic conduction of glasses in Na SXS  (X Si;Ge),
                                                                                                  2
                                                                                               2
                    Na2SP S  and Li S GeS  systems. J Non-Crystall Solids 1980;38-39:271-6.  DOI
                        2 5
                               2
                                   2
               29.       Rao M, Geng X, Li X, Hu S, Li W. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte.
                    J Power Sources 2012;212:179-85.  DOI
               30.       Wang L, Wang YG, Xia YY. A high performance lithium-ion sulfur battery based on a Li S cathode using a dual-phase electrolyte.
                                                                               2
                    Energy Environ Sci 2015;8:1551-8.  DOI
               31.       Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS /Li-In all-solid-state lithium batteries using glass-
                                                                         2
                    geramic Li PS  and Li GeP S solid electrolytes. Electrochim Acta 2014;146:395-402.  DOI
                                      2 12
                             4
                                  10
                           3
               32.       Duan J, Wu W, Nolan AM, et al. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater
                    2019;31:e1807243.  DOI  PubMed
               33.       Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-
                    state Li metal batteries. ACS Nano 2019;13:14549-56.  DOI  PubMed
               34.       Ohara K, Mitsui A, Mori M, et al. Structural and electronic features of binary Li S-P S  glasses. Sci Rep 2016;6:21302.  DOI
                                                                           2  2 5
                    PubMed  PMC
               35.       Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium
                    batteries. Adv Mater 2018;30:e1705702.  DOI  PubMed
               36.       Zheng B, Zhu J, Wang H, et al. Stabilizing Li SnP S /Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl
                                                 10  2 12
                    Mater Interfaces 2018;10:25473-82.  DOI  PubMed
               37.       Kraft MA, Culver SP, Calderon M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic
                    argyrodites Li PS X (X = Cl, Br, I). J Am Chem Soc 2017;139:10909-18.  DOI  PubMed
                             6  5
               38.       Das S, Ngene P, Norby P, Vegge T, de Jongh PE, Blanchard D. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH
                                                                                                         4
                    electrolyte. J Electrochem Soc 2016;163:A2029-34.  DOI
               39.       Fan Z, Ding B, Zhang T, et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur
                    batteries by atomic layer deposition. Small 2019;15:e1903952.  DOI  PubMed
               40.       Qu H, Zhang J, Du A, et al. Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv Sci
                    (Weinh) 2018;5:1700503.  DOI  PubMed  PMC
               41.      Tatsumisago M. Glassy materials based on Li S for all-solid-state lithium secondary batteries. Solid State Ionics 2004;175:13-8.  DOI
                                                 2
               42.       Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Rechargeable lithium batteries, using sulfur-based cathode materials
                    and Li S-P S  glass-ceramic electrolytes. Electrochim Acta 2004;50:893-7.  DOI
                        2
                           2 5
               43.       Chen M, Prasada Rao R, Adams S. The unusual role of Li PS Br in all-solid-state CuS/Li PS Br/In-Li batteries. Solid State Ionics
                                                             5
                                                                               6
                                                          6
                                                                                 5
                    2014;268:300-4.  DOI
               44.       Li X, Liang J, Luo J, et al. High-performance Li-SeS  all-solid-state lithium batteries. Adv Mater 2019;31:e1808100.  DOI  PubMed
                                                      x
               45.       Zhang Q, Huang N, Huang Z, Cai L, Wu J, Yao X. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with
                    ultralong cycle life. J Energy Chem 2020;40:151-5.  DOI
               46.       Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state
                    rechargeable lithium batteries. J Asian Cer Soc 2013;1:17-25.  DOI
               47.       Wang D, Wu Y, Zheng X, Tang S, Gong Z, Yang Y. Li S@NC composite enable high active material loading and high Li S
                                                           2                                            2
                    utilization for all-solid-state lithium sulfur batteries. J Power Sourc 2020;479:228792.  DOI
               48.       Wang Q, Chen Y, Jin J, Wen Z. A new high-capacity cathode for all-solid-state lithium sulfur battery. Solid State Ionics
                    2020;357:115500.  DOI
               49.       Ando T, Sato Y, Matsuyama T, Sakuda A, Tatsumisago M, Hayashi A. High-rate operation of sulfur/mesoporous activated carbon
                    composite electrode for all-solid-state lithium-sulfur batteries. J Ceram Soc Japan 2020;128:233-7.  DOI
               50.       Phuc NHH, Takaki M, Muto H, Reiko M, Kazuhiro H, Matsuda A. Sulfur-carbon nano fiber composite solid electrolyte for all-solid-
                    state Li-S batteries. ACS Appl Energy Mater 2020;3:1569-73.  DOI
               51.       Shi J, Liu G, Weng W, et al. Co S @Li P S  hexagonal platelets as cathodes with superior interfacial contact for all-solid-state
                                          3 4  7 3 11
                    lithium batteries. ACS Appl Mater Interfaces 2020;12:14079-86.  DOI  PubMed
               52.       Fujii Y, Kobayashi M, Miura A, et al. Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid
                    electrolytes. J Power Sources 2020;449:227576.  DOI
               53.       Ryou M, Lee YM, Lee Y, Winter M, Bieker P. Mechanical surface modification of lithium metal: towards improved li metal anode
                    performance by directed Li plating. Adv Funct Mater 2015;25:834-41.  DOI
               54.       Kozen AC, Lin CF, Pearse AJ, et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano
                    2015;9:5884-92.  DOI  PubMed
               55.       Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer
                    deposition surface treatments. Chem Mater 2015;27:6457-62.  DOI
               56.       Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton
                    towards long-life lithium metal anodes. Nat Commun 2015;6:8058.  DOI  PubMed  PMC
               57.       Kwon O, Hirayama M, Suzuki K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li 10+δ Ge
                     P S . J Mater Chem A 2015;3:438-46.  DOI
                    1+δ 2-δ 12
   41   42   43   44   45   46   47   48   49   50   51