Page 46 - Read Online
P. 46
Page 30 of 35 Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46
27. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 2016:1. DOI
28. Ribes M, Barrau B, Souquet J. Sulfide glasses: glass forming region, structure and ionic conduction of glasses in Na SXS (X Si;Ge),
2
2
Na2SP S and Li S GeS systems. J Non-Crystall Solids 1980;38-39:271-6. DOI
2 5
2
2
29. Rao M, Geng X, Li X, Hu S, Li W. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte.
J Power Sources 2012;212:179-85. DOI
30. Wang L, Wang YG, Xia YY. A high performance lithium-ion sulfur battery based on a Li S cathode using a dual-phase electrolyte.
2
Energy Environ Sci 2015;8:1551-8. DOI
31. Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS /Li-In all-solid-state lithium batteries using glass-
2
geramic Li PS and Li GeP S solid electrolytes. Electrochim Acta 2014;146:395-402. DOI
2 12
4
10
3
32. Duan J, Wu W, Nolan AM, et al. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater
2019;31:e1807243. DOI PubMed
33. Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-
state Li metal batteries. ACS Nano 2019;13:14549-56. DOI PubMed
34. Ohara K, Mitsui A, Mori M, et al. Structural and electronic features of binary Li S-P S glasses. Sci Rep 2016;6:21302. DOI
2 2 5
PubMed PMC
35. Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium
batteries. Adv Mater 2018;30:e1705702. DOI PubMed
36. Zheng B, Zhu J, Wang H, et al. Stabilizing Li SnP S /Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl
10 2 12
Mater Interfaces 2018;10:25473-82. DOI PubMed
37. Kraft MA, Culver SP, Calderon M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic
argyrodites Li PS X (X = Cl, Br, I). J Am Chem Soc 2017;139:10909-18. DOI PubMed
6 5
38. Das S, Ngene P, Norby P, Vegge T, de Jongh PE, Blanchard D. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH
4
electrolyte. J Electrochem Soc 2016;163:A2029-34. DOI
39. Fan Z, Ding B, Zhang T, et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur
batteries by atomic layer deposition. Small 2019;15:e1903952. DOI PubMed
40. Qu H, Zhang J, Du A, et al. Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv Sci
(Weinh) 2018;5:1700503. DOI PubMed PMC
41. Tatsumisago M. Glassy materials based on Li S for all-solid-state lithium secondary batteries. Solid State Ionics 2004;175:13-8. DOI
2
42. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Rechargeable lithium batteries, using sulfur-based cathode materials
and Li S-P S glass-ceramic electrolytes. Electrochim Acta 2004;50:893-7. DOI
2
2 5
43. Chen M, Prasada Rao R, Adams S. The unusual role of Li PS Br in all-solid-state CuS/Li PS Br/In-Li batteries. Solid State Ionics
5
6
6
5
2014;268:300-4. DOI
44. Li X, Liang J, Luo J, et al. High-performance Li-SeS all-solid-state lithium batteries. Adv Mater 2019;31:e1808100. DOI PubMed
x
45. Zhang Q, Huang N, Huang Z, Cai L, Wu J, Yao X. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with
ultralong cycle life. J Energy Chem 2020;40:151-5. DOI
46. Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state
rechargeable lithium batteries. J Asian Cer Soc 2013;1:17-25. DOI
47. Wang D, Wu Y, Zheng X, Tang S, Gong Z, Yang Y. Li S@NC composite enable high active material loading and high Li S
2 2
utilization for all-solid-state lithium sulfur batteries. J Power Sourc 2020;479:228792. DOI
48. Wang Q, Chen Y, Jin J, Wen Z. A new high-capacity cathode for all-solid-state lithium sulfur battery. Solid State Ionics
2020;357:115500. DOI
49. Ando T, Sato Y, Matsuyama T, Sakuda A, Tatsumisago M, Hayashi A. High-rate operation of sulfur/mesoporous activated carbon
composite electrode for all-solid-state lithium-sulfur batteries. J Ceram Soc Japan 2020;128:233-7. DOI
50. Phuc NHH, Takaki M, Muto H, Reiko M, Kazuhiro H, Matsuda A. Sulfur-carbon nano fiber composite solid electrolyte for all-solid-
state Li-S batteries. ACS Appl Energy Mater 2020;3:1569-73. DOI
51. Shi J, Liu G, Weng W, et al. Co S @Li P S hexagonal platelets as cathodes with superior interfacial contact for all-solid-state
3 4 7 3 11
lithium batteries. ACS Appl Mater Interfaces 2020;12:14079-86. DOI PubMed
52. Fujii Y, Kobayashi M, Miura A, et al. Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid
electrolytes. J Power Sources 2020;449:227576. DOI
53. Ryou M, Lee YM, Lee Y, Winter M, Bieker P. Mechanical surface modification of lithium metal: towards improved li metal anode
performance by directed Li plating. Adv Funct Mater 2015;25:834-41. DOI
54. Kozen AC, Lin CF, Pearse AJ, et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano
2015;9:5884-92. DOI PubMed
55. Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer
deposition surface treatments. Chem Mater 2015;27:6457-62. DOI
56. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton
towards long-life lithium metal anodes. Nat Commun 2015;6:8058. DOI PubMed PMC
57. Kwon O, Hirayama M, Suzuki K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li 10+δ Ge
P S . J Mater Chem A 2015;3:438-46. DOI
1+δ 2-δ 12