Page 51 - Read Online
P. 51
Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46 Page 35 of 35
species using operando SANS. Energy Stor Mate 2021;40:219-28. DOI
179. Zhu Z, Lu LL, Yin Y, Shao J, Shen B, Yao HB. High rate and stable solid-state lithium metal batteries enabled by electronic and
ionic mixed conducting network interlayers. ACS Appl Mater Interfaces 2019;11:16578-85. DOI PubMed
180. Gao X, Zheng X, Tsao Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators. J Am Chem Soc
2021;143:18188-95. DOI PubMed
181. Duan C, Cheng Z, Li W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-
vapor deposition. Energy Environ Sci 2022;15:3236-45. DOI
182. Liu S, Wang H, Imanishi N, et al. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium
bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF SO ) N/Li. J
3
2 2
Power Sources 2011;196:7681-6. DOI
183. Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett
2015;15:2740-5. DOI PubMed
184. Fu KK, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.
Proc Natl Acad Sci USA 2016;113:7094-9. DOI PubMed PMC
185. Wang Q, Wen Z, Jin J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem Commun
2016;52:1637-40. DOI PubMed
186. Blanga R, Goor M, Burstein L, et al. The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid
State Electrochem 2016;20:3393-404. DOI
187. Xia Y, Wang X, Xia X, et al. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-
hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 2017;23:15203-9. DOI PubMed
188. Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires.
Nat Energy 2017:2. DOI
189. Judez X, Zhang H, Li C, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) Polymer electrolyte for all solid-state Li-S cell.
J Phys Chem Lett 2017;8:1956-60. DOI PubMed
190. Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at
lithium metal electrodes. Solid State Ionics 2018;318:102-12. DOI
191. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From
“ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84. DOI
192. Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. Free-standing PEO/LITFSI/LAGP composite electrolyte membranes for
applications to flexible solid-state lithium-based batteries. J Electrochem Soc 2019;166:A416-22. DOI
193. Xu X, Hou G, Nie X, et al. Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-
7 3 11
solid-state batteries. J Power Sources 2018;400:212-7. DOI
194. Hu J, Yuan H, Yang S, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-
sulfur batteries. J Energy Chem 2022;71:612-8. DOI
195. Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials,
structures, and characterization. Adv Mater 2018;30:e1802068. DOI PubMed
196. Nobili F, Tossici R, Marassi R, Croce F, Scrosati B. An AC impedance spectroscopic study of Li CoO at different temperatures. J
x 2
Phys Chem B 2002;106:3909-15. DOI
197. Zhang W, Weber DA, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the
performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces 2017;9:17835-45. DOI PubMed
198. Wang C, Gong Y, Dai J, et al. In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries. J Am Chem
Soc 2017;139:14257-64. DOI PubMed
199. Ishiguro K, Nakata Y, Matsui M, et al. Stability of Nb-Doped Cubic Li La Zr O with Lithium Metal. J Electrochem Soc
3
7
2
12
2013;160:A1690-3. DOI
200. Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission.
Solid State Ionics 2015;273:51-4. DOI
201. Gong Y, Zhang J, Jiang L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of
LiCoO Cathode in a working all-solid-state battery. J Am Chem Soc 2017;139:4274-7. DOI PubMed
2
202. Yousaf M, Naseer U, Li Y, et al. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ
transmission electron microscopy. Energy Environ Sci 2021;14:2670-707. DOI
203. Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution
mechanism in a bulk-type solid-state cell with a Li S-P S solid electrolyte. Phys Chem Chem Phys 2013;15:18600-6. DOI
2 2 5
204. Tan DHS, Banerjee A, Chen Z, Meng YS. From nanoscale interface characterization to sustainable energy storage using all-solid-
state batteries. Nat Nanotechnol 2020;15:170-80. DOI PubMed
205. Liang X, Wang L, Wu X, et al. Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J
Energy Chem 2022;73:370-86. DOI
206. Li G, Chen Z, Lu J. Lithium-sulfur batteries for commercial applications. Chem 2018;4:3-7. DOI
207. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology.
Energy Mater 2022;1:100002. DOI