Page 51 - Read Online
P. 51

Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46  Page 35 of 35

                    species using operando SANS. Energy Stor Mate 2021;40:219-28.  DOI
               179.      Zhu Z, Lu LL, Yin Y, Shao J, Shen B, Yao HB. High rate and stable solid-state lithium metal batteries enabled by electronic and
                    ionic mixed conducting network interlayers. ACS Appl Mater Interfaces 2019;11:16578-85.  DOI  PubMed
               180.      Gao  X,  Zheng  X,  Tsao  Y,  et  al.  All-solid-state  lithium-sulfur  batteries  enhanced  by  redox  mediators.  J  Am  Chem  Soc
                    2021;143:18188-95.  DOI  PubMed
               181.      Duan C, Cheng Z, Li W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-
                    vapor deposition. Energy Environ Sci 2022;15:3236-45.  DOI
               182.      Liu  S,  Wang  H,  Imanishi  N,  et  al.  Effect  of  co-doping  nano-silica  filler  and  N-methyl-N-propylpiperidinium
                    bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF SO ) N/Li. J
                                                                                                 3
                                                                                                    2 2
                    Power Sources 2011;196:7681-6.  DOI
               183.      Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett
                    2015;15:2740-5.  DOI  PubMed
               184.      Fu KK, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.
                    Proc Natl Acad Sci USA 2016;113:7094-9.  DOI  PubMed  PMC
               185.      Wang Q, Wen Z, Jin J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries.  Chem Commun
                    2016;52:1637-40.  DOI  PubMed
               186.      Blanga R, Goor M, Burstein L, et al. The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid
                    State Electrochem 2016;20:3393-404.  DOI
               187.      Xia  Y,  Wang  X,  Xia  X,  et  al.  A  newly  designed  composite  gel  polymer  electrolyte  based  on  poly(vinylidene  fluoride-
                    hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 2017;23:15203-9.  DOI  PubMed
               188.      Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires.
                    Nat Energy 2017:2.  DOI
               189.      Judez X, Zhang H, Li C, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) Polymer electrolyte for all solid-state Li-S cell.
                    J Phys Chem Lett 2017;8:1956-60.  DOI  PubMed
               190.      Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at
                    lithium metal electrodes. Solid State Ionics 2018;318:102-12.  DOI
               191.      Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From
                    “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.  DOI
               192.      Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. Free-standing PEO/LITFSI/LAGP composite electrolyte membranes for
                    applications to flexible solid-state lithium-based batteries. J Electrochem Soc 2019;166:A416-22.  DOI
               193.      Xu X, Hou G, Nie X, et al. Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-
                                        7 3 11
                    solid-state batteries. J Power Sources 2018;400:212-7.  DOI
               194.      Hu J, Yuan H, Yang S, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-
                    sulfur batteries. J Energy Chem 2022;71:612-8.  DOI
               195.      Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials,
                    structures, and characterization. Adv Mater 2018;30:e1802068.  DOI  PubMed
               196.      Nobili F, Tossici R, Marassi R, Croce F, Scrosati B. An AC impedance spectroscopic study of Li CoO  at different temperatures. J
                                                                                    x  2
                    Phys Chem B 2002;106:3909-15.  DOI
               197.      Zhang W, Weber DA, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the
                    performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces 2017;9:17835-45.  DOI  PubMed
               198.      Wang C, Gong Y, Dai J, et al. In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries. J Am Chem
                    Soc 2017;139:14257-64.  DOI  PubMed
               199.      Ishiguro K, Nakata Y, Matsui M, et al. Stability of Nb-Doped Cubic Li La Zr O  with Lithium Metal. J Electrochem Soc
                                                                         3
                                                                      7
                                                                           2
                                                                             12
                    2013;160:A1690-3.  DOI
               200.      Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission.
                    Solid State Ionics 2015;273:51-4.  DOI
               201.      Gong Y, Zhang J, Jiang L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of
                    LiCoO  Cathode in a working all-solid-state battery. J Am Chem Soc 2017;139:4274-7.  DOI  PubMed
                        2
               202.      Yousaf M, Naseer U, Li Y, et al. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ
                    transmission electron microscopy. Energy Environ Sci 2021;14:2670-707.  DOI
               203.      Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution
                    mechanism in a bulk-type solid-state cell with a Li  S-P S solid electrolyte. Phys Chem Chem Phys 2013;15:18600-6.  DOI
                                                   2   2 5
               204.      Tan DHS, Banerjee A, Chen Z, Meng YS. From nanoscale interface characterization to sustainable energy storage using all-solid-
                    state batteries. Nat Nanotechnol 2020;15:170-80.  DOI  PubMed
               205.      Liang X, Wang L, Wu X, et al. Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J
                    Energy Chem 2022;73:370-86.  DOI
               206.      Li G, Chen Z, Lu J. Lithium-sulfur batteries for commercial applications. Chem 2018;4:3-7.  DOI
               207.      Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology.
                    Energy Mater 2022;1:100002.  DOI
   46   47   48   49   50   51   52   53   54   55   56