Page 47 - Read Online
P. 47

Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46  Page 31 of 35

               58.       Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with
                    lithiophilic coating. Proc Natl Acad Sci USA 2016;113:2862-7.  DOI  PubMed  PMC
               59.       Cao Y, Meng X, Elam JW. Atomic layer deposition of Li XAl YS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes.
                    ChemElectroChem  2016;3:858-63.  DOI
               60.       Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.
                    Nat Nano Technol 2016;11:626-32.  DOI  PubMed
               61.       Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free
                    lithium metal anode. Nat Commun 2016;7:10992.  DOI  PubMed  PMC
               62.       Sun Y, Zheng G, Seh Z, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016;1:287-97.
                    DOI
               63.       Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite
                    growth. Adv Mater 2016;28:2155-62.  DOI  PubMed
               64.       Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer
                    sandwich electrolyte. J Am Chem Soc 2016;138:9385-8.  DOI  PubMed
               65.       Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale Nucleation and growth of electrodeposited lithium metal. Nano Lett 2017;17:1132-9.
                    DOI  PubMed
               66.       Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal
                    anode. Adv Mater 2017;29:1702714.  DOI  PubMed
               67.       Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries.  Adv Mater
                    2017;29:1700542.  DOI  PubMed
               68.       Yu B, Tao T, Mateti S, Lu S, Chen Y. Nanoflake arrays of lithiophilic metal oxides for the ultra - stable anodes of lithium - metal
                    batteries. Adv Funct Mater 2018;28:1803023.  DOI
               69.       Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv Mater
                    2018;30:e1800884.  DOI  PubMed
               70.       Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li
                    deposition for Li metal anodes. Adv Energy Mater 2018;8:1800914.  DOI
               71.       Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule
                    2018;2:764-77.  DOI
               72.       Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy
                    Stor Mater 2018;14:222-9.  DOI
               73.       Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal
                    capacity, high rate lithium-metal anodes. Adv Mater 2018;30:e1801328.  DOI  PubMed
               74.       Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic”
                    electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 2019;9:1804004.  DOI
               75.       Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary
                    lithium batteries. Nat Energy 2019;4:365-73.  DOI
               76.       Xia Y, Liang Y, Xie D, et al. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer
                    electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 2019;358:1047-53.  DOI
               77.       Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design.
                    Chem Soc Rev 2020;49:2140-95.  DOI  PubMed
               78.       Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C. Composition modulation and structure design of inorganic-in-polymer composite solid
                    electrolytes for advanced lithium batteries. Small 2020;16:e1902813.  DOI  PubMed
               79.       Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy
                    2017;33:363-86.  DOI
               80.       Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li Al Ge (PO )  solid electrolyte and Li metal in
                                                                          1.5  0.5  1.5  4 3
                    an all solid-state Li cell. Chem Mater 2017;29:8611-9.  DOI
               81.       Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study
                    interfacial reactions by photoelectron spectroscopy. Solid State Ionics 2015;278:98-105.  DOI
               82.      Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater 2016;28:266-73.  DOI
               83.       Eom M, Son S, Park C, Noh S, Nichols WT, Shin D. High performance all-solid-state lithium-sulfur battery using a Li S-VGCF
                                                                                                    2
                    nanocomposite. Electrochim Acta 2017;230:279-84.  DOI  PubMed
               84.       Yao X, Huang N, Han F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced
                    graphene oxide cathodes. Adv Energy Mater 2017;7:1602923.  DOI
               85.       Sakuda A, Sato Y, Hayashi A, Tatsumisago M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-
                    solid-state lithium-sulfur batteries. Energy Technol 2019;7:1900077.  DOI
               86.       Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.  DOI  PubMed
               87.       Liu ZC, Fu WJ, Payzant EA, et al. Anomalous high ionic conductivity of nanoporous β-Li PS . J Am Chem Soc 2013;135:975-8.
                                                                                3  4
                    DOI  PubMed
               88.       Goodenough J, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.  DOI
   42   43   44   45   46   47   48   49   50   51   52