Page 47 - Read Online
P. 47
Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46 Page 31 of 35
58. Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with
lithiophilic coating. Proc Natl Acad Sci USA 2016;113:2862-7. DOI PubMed PMC
59. Cao Y, Meng X, Elam JW. Atomic layer deposition of Li XAl YS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes.
ChemElectroChem 2016;3:858-63. DOI
60. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.
Nat Nano Technol 2016;11:626-32. DOI PubMed
61. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free
lithium metal anode. Nat Commun 2016;7:10992. DOI PubMed PMC
62. Sun Y, Zheng G, Seh Z, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016;1:287-97.
DOI
63. Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite
growth. Adv Mater 2016;28:2155-62. DOI PubMed
64. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer
sandwich electrolyte. J Am Chem Soc 2016;138:9385-8. DOI PubMed
65. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale Nucleation and growth of electrodeposited lithium metal. Nano Lett 2017;17:1132-9.
DOI PubMed
66. Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal
anode. Adv Mater 2017;29:1702714. DOI PubMed
67. Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater
2017;29:1700542. DOI PubMed
68. Yu B, Tao T, Mateti S, Lu S, Chen Y. Nanoflake arrays of lithiophilic metal oxides for the ultra - stable anodes of lithium - metal
batteries. Adv Funct Mater 2018;28:1803023. DOI
69. Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv Mater
2018;30:e1800884. DOI PubMed
70. Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li
deposition for Li metal anodes. Adv Energy Mater 2018;8:1800914. DOI
71. Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule
2018;2:764-77. DOI
72. Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy
Stor Mater 2018;14:222-9. DOI
73. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal
capacity, high rate lithium-metal anodes. Adv Mater 2018;30:e1801328. DOI PubMed
74. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic”
electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 2019;9:1804004. DOI
75. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary
lithium batteries. Nat Energy 2019;4:365-73. DOI
76. Xia Y, Liang Y, Xie D, et al. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer
electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 2019;358:1047-53. DOI
77. Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design.
Chem Soc Rev 2020;49:2140-95. DOI PubMed
78. Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C. Composition modulation and structure design of inorganic-in-polymer composite solid
electrolytes for advanced lithium batteries. Small 2020;16:e1902813. DOI PubMed
79. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy
2017;33:363-86. DOI
80. Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li Al Ge (PO ) solid electrolyte and Li metal in
1.5 0.5 1.5 4 3
an all solid-state Li cell. Chem Mater 2017;29:8611-9. DOI
81. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study
interfacial reactions by photoelectron spectroscopy. Solid State Ionics 2015;278:98-105. DOI
82. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater 2016;28:266-73. DOI
83. Eom M, Son S, Park C, Noh S, Nichols WT, Shin D. High performance all-solid-state lithium-sulfur battery using a Li S-VGCF
2
nanocomposite. Electrochim Acta 2017;230:279-84. DOI PubMed
84. Yao X, Huang N, Han F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced
graphene oxide cathodes. Adv Energy Mater 2017;7:1602923. DOI
85. Sakuda A, Sato Y, Hayashi A, Tatsumisago M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-
solid-state lithium-sulfur batteries. Energy Technol 2019;7:1900077. DOI
86. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6. DOI PubMed
87. Liu ZC, Fu WJ, Payzant EA, et al. Anomalous high ionic conductivity of nanoporous β-Li PS . J Am Chem Soc 2013;135:975-8.
3 4
DOI PubMed
88. Goodenough J, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603. DOI