Page 49 - Read Online
P. 49
Tao et al. Energy Mater 2022;2:200036 https://dx.doi.org/10.20517/energymater.2022.46 Page 33 of 35
120. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. All-solid-state Li/S batteries with highly conductive glass-ceramic
electrolytes. Electr Comm 2003;5:701-5. DOI
121. Zhu X, Wen Z, Gu Z, Lin Z. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J
Power Sources 2005;139:269-73. DOI
122. Jeong S, Lim Y, Choi Y, et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three
different mixing conditions. J Power Sources 2007;174:745-50. DOI
123. Kobayashi T, Imade Y, Shishihara D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J Power
Sources 2008;182:621-5. DOI
124. Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li S as a positive
2
electrode material. J Power Sources 2008;183:422-6. DOI
125. Hayashi A, Ohtsubo R, Nagao M, Tatsumisago M. Characterization of Li S-P S -Cu composite electrode for all-solid-state lithium
2
2 5
secondary batteries. J Mater Sci 2010;45:377-81. DOI
126. Nagao M, Hayashi A, Tatsumisago M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li S-P S solid
2 2 5
electrolyte. Electrochim Acta 2011;56:6055-9. DOI
127. Nagao M, Hayashi A, Tatsumisago M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for
bulk-type solid-state Li/S battery. Electr Comm 2012;22:177-80. DOI
128. Agostini M, Aihara Y, Yamada T, Scrosati B, Hassoun J. A lithium-sulfur battery using a solid, glass-type P S -Li S electrolyte. Solid
2
2 5
State Ionics 2013;244:48-51. DOI
129. Nagao M, Imade Y, Narisawa H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid
electrolyte. J Power Sources 2013;222:237-42. DOI
130. Kinoshita S, Okuda K, Machida N, Shigematsu T. Additive effect of ionic liquids on the electrochemical property of a sulfur
composite electrode for all-solid-state lithium-sulfur battery. J Power Sources 2014;269:727-34. DOI
131. Nagata H, Chikusa Y. Transformation of P S into a solid electrolyte with ionic conductivity at the positive composite electrode of
2 5
all-solid-state lithium-sulfur batteries. Energy Technol 2014;2:753-6. DOI
132. Chen M, Adams S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State
Electrochem 2015;19:697-702. DOI
133. Yu C, van Eijck L, Ganapathy S, Wagemaker M. Synthesis, structure and electrochemical performance of the argyrodite Li PS Cl
6
5
solid electrolyte for Li-ion solid state batteries. Electrochim Acta 2016;215:93-9. DOI
134. Choi HU, Jin JS, Park J, Lim H. Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure
of sulfur composite electrode. J Alloys Comp 2017;723:787-94. DOI
135. Zhang Y, Chen K, Shen Y, Lin Y, Nan C. Synergistic effect of processing and composition x on conductivity of xLi S-(100-x)P S
2 2 5
electrolytes. Solid State Ionics 2017;305:1-6. DOI
136. Ulissi U, Ito S, Hosseini SM, Varzi A, Aihara Y, Passerini S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur
composites. Adv Energy Mater 2018;8:1801462. DOI
137. Zhang Y, Liu T, Zhang Q, et al. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a
composite cathode. J Mater Chem A 2018;6:23345-56. DOI
138. Gracia I, Ben Youcef H, Judez X, et al. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S
batteries. J Power Sources 2018;390:148-52. DOI
139. Yu C, Hageman J, Ganapathy S, et al. Tailoring Li PS Br ionic conductivity and understanding of its role in cathode mixtures for
6 5
high performance all-solid-state Li-S batteries. J Mater Chem A 2019;7:10412-21. DOI
140. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for
lithium-sulfur batteries. Angew Chem Int Ed 2013;52:7460-3. DOI PubMed
141. Lin Z, Liu ZC, Dudney NJ, Liang CD. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano
2013;7:2829-33. DOI PubMed
142. Unemoto A, Yasaku S, Nogami G, et al. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH electrolyte. Appl
4
Phys Lett 2014;105:083901. DOI
143. Han F, Yue J, Fan X, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li S
2
nanocomposite. Nano Lett 2016;16:4521-7. DOI PubMed
144. Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li La Zr O 12
2
7
3
/carbon foam and polymer. Nano Lett 2017;17:2967-72. DOI PubMed
145. Zhang C, Lin Y, Zhu Y, Zhang Z, Liu J. Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-
sulfur batteries. RSC Adv 2017;7:19231-6. DOI
146. Suzuki K, Kato D, Hara K, et al. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-
state lithium-sulfur battery with a Li Ge P S electrolyte. Electrochim Acta 2017;258:110-5. DOI
3.25 0.25 0.75 4
147. Suzuki K, Tateishi M, Nagao M, et al. Synthesis, structure, and electrochemical properties of a sulfur-carbon replica composite
electrode for all-solid-state li-sulfur batteries. J Electrochem Soc 2017;164:A6178-83. DOI
148. Oh DY, Kim DH, Jung SH, Han J, Choi N, Jung YS. Single-step wet-chemical fabrication of sheet-type electrodes from solid-
electrolyte precursors for all-solid-state lithium-ion batteries. J Mater Chem A 2017;5:20771-9. DOI
149. Trevey JE, Jung YS, Lee S. High lithium ion conducting Li S-GeS -P S glass-ceramic solid electrolyte with sulfur additive for all
2
2
2 5