Page 45 - Read Online
P. 45

Tao et al. Energy Mater 2022;2:200036  https://dx.doi.org/10.20517/energymater.2022.46  Page 29 of 35

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Takada K. Progress and prospective of solid-state lithium batteries. Acta Materialia 2013;61:759-70.  DOI
               2.       Song MK, Cairns EJ, Zhang Y. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale
                    2013;5:2186-204.  DOI  PubMed
               3.       Lin Z, Liang C. Lithium-sulfur batteries: from liquid to solid cells. J Mater Chem A 2015;3:936-58.  DOI
               4.       Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat
                    Energy 2016:1.  DOI
               5.       Wang Y, Sahadeo E, Rubloff G, Lin C, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection
                    layers and perspective of solid-state electrolytes. J Mater Sci 2019;54:3671-93.  DOI
               6.       Yan M, Wang W, Yin Y, Wan L, Guo Y. Interfacial design for lithium-sulfur batteries: from liquid to solid. Energy Chem
                    2019;1:100002.  DOI
               7.       Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode
                    solid electrolyte cells. Nat Mater 2019;18:1105-11.  DOI  PubMed
               8.       Zhang W, Zhang Y, Peng L, et al. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of
                    tellurium-doping and surface coating. Nano Energy 2020;76:105083.  DOI
               9.       Nie K, Hong Y, Qiu J, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives.
                    Front Chem 2018;6:616.  DOI  PubMed  PMC
               10.       Lou S, Zhang F, Fu C, et al. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and Beyond. Adv Mater
                    2021;33:e2000721.  DOI  PubMed
               11.       Sun Y, Huang J, Zhao C, Zhang Q. A review of solid electrolytes for safe lithium-sulfur batteries. Sci China Chem 2017;60:1508-26.
                    DOI
               12.       Judez X, Zhang H, Li CM et al. Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and
                    challenges. J Electrochem Soc 2018;165:A6008-16.  DOI
               13.       Tian Y, Shi T, Richards WD, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ
                    Sci 2017;10:1150-66.  DOI
               14.       Gauthier M, Carney TJ, Grimaud A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.
                    J Phys Chem Lett 2015;6:4653-72.  DOI  PubMed
               15.       Luntz AC, Voss J, Reuter K. Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 2015;6:4599-604.  DOI  PubMed
               16.       Sang L, Bassett KL, Castro FC, et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface
                    for all-solid-state Li batteries. Chem Mater 2018;30:8747-56.  DOI
               17.       Xiao Y, Wang Y, Bo S, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater
                    2020;5:105-26.  DOI
               18.       Zhang X, Cheng X, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 2018;5:1701097.
                    DOI
               19.       Umeshbabu E, Zheng B, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-Ion conductive solid
                    electrolytes. Electrochem Energ Rev 2019;2:199-230.  DOI
               20.       Zhang C, Feng Y, Han Z, Gao S, Wang M, Wang P. Electrochemical and structural analysis in all-solid-state lithium batteries by
                    analytical electron microscopy: progress and perspectives. Adv Mater 2020;32:e1903747.  DOI  PubMed
               21.       Yue J, Yan M, Yin Y, Guo Y. Progress of the interface design in all-solid-state Li-S batteries. Adv Funct Mater 2018;28:1707533.
                    DOI
               22.       Wu Z, Xie Z, Yoshida A, et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew
                    Sust Energy Rev 2019;109:367-85.  DOI
               23.       Xu L, Tang S, Cheng Y, et al. Interfaces in solid-state lithium batteries. Joule 2018;2:1991-2015.  DOI
               24.       Hu Y-, Raistrick ID, Huggins RA. Ionic conductivity of Lithium orthosilicate -Lithium phosphate solid solutions. J Electrochem Soc
                    1977;124:1240-2.  DOI
               25.      Shannon R, Taylor B, English A, Berzins T. New Li solid electrolytes. Electrochim Acta 1977;22:783-96.  DOI
               26.       Hong H. Crystal structure and ionic conductivity of Li Zn(GeO )  and other new Li+ superionic conductors. Mater Res Bulletin
                                                        14     4 4
                    1978;13:117-24.  DOI
   40   41   42   43   44   45   46   47   48   49   50