Page 157 - Read Online
P. 157
Ding et al. Soft Sci. 2026, 6, 2 Page 15 of 15
48. Ma, D.; Zhang, Y.; Gao, S. Magnetic-dielectric synergy in manganese ferrite/coal gasification fine slag composites for broadband
electromagnetic wave absorption. Chem. Eng. Sci. 2026, 320, 122480. DOI
49. Wang, N.; Kou, X.; Zhong, L.; et al. Geometry-defect-spin coupling in chiral high-entropy systems: multiscale mechanisms of GHz
electromagnetic dissipation. Sci. Adv. 2025, 11, eadz2218. DOI PubMed PMC
50. Xiong, T.; Luo, Y.; Qian, Y.; et al. High electromagnetic wave absorption and flame retardancy performance from NF@HCS/NF-filled
epoxy-based electronic packaging material. J. Mater. Chem. A. 2024, 12, 1094-105. DOI
51. Hidalgo-jiménez, J.; Akbay, T.; Sauvage, X.; Ishihara, T.; Edalati, K. Mixed atomic-scale electronic configuration as a strategy to avoid
cocatalyst utilization in photocatalysis by high-entropy oxides. Acta. Materialia. 2025, 283, 120559. DOI
52. Li, Y.; Xiong, T.; Xu, C.; et al. Al 2 O 3 /h-BN/epoxy based electronic packaging material with high thermal conductivity and flame
retardancy. J. Appl. Polym. Sci. 2023, 140, e53291. DOI
53. Zhao, Y.; Wang, N.; Wang, H.; et al. Chiral structure induces spatial spiral arrangement of Fe 3 O 4 nanoparticles to optimize
electromagnetic wave dissipation. Appl. Phys. Lett. 2024, 124, 161901. DOI
54. Cao, R.; Qiu, Y.; Zhao, X.; et al. Carbon-CoFe 2 O 4 composite with hierarchical porous structure for efficient microwave absorption.
Diamond. Relat. Mater. 2025, 157, 112542. DOI
55. Jiang, J.; Lan, D.; Li, Y.; et al. Construction of spherical heterogeneous interface on ZnFe 2 O 4 @C composite nanofibers for highly
efficient microwave absorption. Ceram. Int. 2024, 50, 38331-41. DOI
56. Liu, M.; Zhao, B.; Pei, K.; et al. An ion-engineering strategy to design hollow FeCo/CoFe 2 O 4 microspheres for high-performance
microwave absorption. Small 2023, 19, e2300363. DOI
57. Chai, L.; Wang, Y.; Zhou, N.; et al. In-situ growth of core-shell ZnFe 2 O 4 @ porous hollow carbon microspheres as an efficient
microwave absorber. J. Colloid. Interface. Sci. 2021, 581, 475-84. DOI PubMed
58. Mandal, D.; Bhandari, B.; Mullurkara, S. V.; Ohodnicki, P. R. All-around electromagnetic wave absorber based on Ni-Zn ferrite. ACS.
Appl. Mater. Interfaces. 2024, 16, 33846-54. DOI PubMed PMC
59. Wu, H.; Liu, J.; Liang, H.; Zang, D. Sandwich-like Fe 3 O 4 /Fe 3 S 4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020,
393, 124743. DOI
60. Chen, W.; Liu, Q.; Zhu, X.; Fu, M. One-step in situ growth of magnesium ferrite nanorods on graphene and their microwave-absorbing
properties. Appl. Organomet. Chem. 2018, 32, e4017. DOI
61. Ma, J.; Zhao, B.; Xiang, H.; et al. High-entropy spinel ferrites MFe 2 O 4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic
properties and strong microwave absorption. J. Adv. Ceram. 2022, 11, 754-68. DOI
62. Guo, L.; He, Y.; Chen, D.; et al. Hydrothermal synthesis and microwave absorption properties of nickel ferrite/multiwalled carbon
nanotubes composites. Coatings 2021, 11, 534. DOI
63. Xiang, X.; Gao, S.; Zhang, Y. Magnetic-electric synergistic coal gangue-based high-efficiency electromagnetic wave absorber. Chem.
Eng. J. 2025, 524, 169310. DOI
64. Qian, Y.; Gang, S.; Li, Y.; et al. Advanced multifunctional IGBT packing materials with enhanced thermal conductivity and
electromagnetic wave absorption properties. J. Colloid. Interface. Sci. 2024, 653, 617-26. DOI PubMed
Disclaimer/Publisher’s Note: All statements, opinions, and data contained in this publication are solely those of the individual author(s) and
contributor(s) and do not necessarily reflect those of OAE and/or the editor(s). OAE and/or the editor(s) disclaim any responsibility for harm to
persons or property resulting from the use of any ideas, methods, instructions, or products mentioned in the content.
© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,sharing, adaptation,distribution and
reproduction in any medium or format,for any purpose,even commercially,as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license,and indicate if changes were made.

