Page 156 - Read Online
P. 156

Page 14 of 15                                                         Ding et al. Soft Sci. 2026, 6, 2





               22.  Zhao, B.; Li, Y.; Zeng, Q.; et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave
                  absorption properties. Small 2020, 16, e2003502. DOI PubMed
               23.  Chen, N.; Wang, R.; Pan, X.; et al. Hollow engineering of core-shell Fe 3 O 4 @MoS 2  microspheres with controllable interior toward
                  optimized electromagnetic attenuation. Adv. Compos. Hybrid. Mater. 2025, 8, 1393. DOI
               24.  Ban, Q.; Li, L.; Liu, H.; et al. Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for
                  superior electromagnetic wave absorption. Carbon 2023, 215, 118506. DOI
               25.  Liu, S.; Zhou, D.; Huang, F.; et al. Heterointerface engineering of polymer-based electromagnetic wave absorbing materials. Soft. Sci.
                  2025, 5, 7. DOI
               26.  Ma, Z.; Yang, K.; Li, D.; et al. The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms
                  modulated yolk@shell Fe x N@NGC. Adv. Mater. 2024, 36, e2314233. DOI PubMed
               27.  Lian, Y.; Han, B.; Liu, D.; et al. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for
                  microwave absorption. Nano-Micro. Lett. 2020, 12, 153. DOI PubMed PMC
               28.  Zhou, X.; Jia, Z.; Zhang, X.; et al. Electromagnetic wave absorption performance of NiCo 2 X 4  (X = O, S, Se, Te) spinel structures. Chem.
                  Eng. J. 2021, 420, 129907. DOI
               29.  Wu, P.; Wang, J.; Li, J.; Feng, J.; He, W.; Guo, H. Pseudo-binary composite of Sr 2 TiMoO 6 -Al 2 O 3  as a novel microwave absorbing
                  material. Rare. Met. 2025, 44, 503-14. DOI
               30.  Zhu, S.; Shu, J.; Cao, M. Tailorable MOF architectures for high-efficiency electromagnetic functions. Mater. Chem. Front. 2021, 5,
                  6444-60. DOI
               31.  Zhang, Y.; Zhu, C.; Gao, S. Multi-scale magnetic and electric interaction in gradient magnetic-dielectric heterostructures with excellent
                  low-frequency electromagnetic wave absorption. Nano. Res. 2025, 18, 94907622. DOI
               32.  Zhao, Z.; Zhang, L.; Wu, H. Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, e2205376.
                  DOI PubMed
               33.  Zhao, Y.; Wang, W.; Wang, Q.; et al. Construction of excellent electromagnetic wave absorber from multi-heterostructure materials
                  derived from ZnCo 2 O 4  and ZIF-67 composite. Carbon 2021, 185, 514-25. DOI
               34.  Li, T.; Ma, L.; Wang, L.; et al. Ultra-wide band electromagnetic wave absorption by decorating the magnetic particles on two-
                  dimensional Ti 3 C 2 T x . Rare. Met. 2025, 44, 1844-55. DOI
               35.  Qi, J.; Liang, C.; Ruan, K.; et al. Cactus-like architecture for synergistic microwave absorption and thermal management. Natl. Sci. Rev.
                  2025, 12, nwaf394. DOI PubMed PMC
               36.  Zhao, H.; Xu, X.; Wang, Y.; et al. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against
                  electromagnetic pollution. Small 2020, 16, e2003407. DOI PubMed
               37.  Zhan, B.; Qu, Y.; Qi, X.; et al. Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures
                  for microwave absorption, anti-corrosion and thermal insulation. Nanomicro. Lett. 2024, 16, 221. DOI PubMed PMC
               38.  Su, X.; Wang, J.; Liu, T.; et al. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption
                  enhancement. Adv. Funct. Mater. 2024, 34, 2403397. DOI
               39.  Nguyen, T. T.; Edalati, K. High-entropy oxide with tailored heterogeneous electronic structure as a low-bandgap catalyst for antibiotic
                  photodegradation under visible light. Appl. Catal. B:. Environ. Energy. 2026, 382, 126011. DOI
               40.  Wang, Y.; Zhao, P.; Liang, B.; Chen, K.; Wang, G. Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient
                  microwave absorbing material. Carbon 2023, 202, 66-75. DOI
               41.  Guo, S.; Zhu, J.; Song, Z.; et al. Multispectral ErBO 3 @ATO porous composite microspheres with laser and electromagnetic wave
                  compatible absorption. Rare. Met. 2023, 42, 2406-18. DOI
               42.  Sun, R.; Lv, H.; Lian, G.; et al. Dielectric shell regulation in synergy FeCoNi@ZnIn 2 S 4  microspheres with broadband electromagnetic
                  wave absorption. Soft. Sci. 2025, 5. DOI
               43.  Zhang, Y.; Kong, J.; Gu, J. New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413-5.
                  DOI PubMed
               44.  Wang, X.; Pan, F.; Xiang, Z.; et al. Magnetic vortex core-shell Fe 3 O 4 @C nanorings with enhanced microwave absorption performance.
                  Carbon 2020, 157, 130-9. DOI
               45.  Hai, H. T. N.; Arita, M.; Edalati, K. High-entropy perovskites as new photocatalysts for cocatalyst-free water splitting. Appl. Catal. B:.
                  Environ. Energy. 2026, 383, 126081. DOI
               46.  Lv, H.; Cui, J.; Li, B.; Yuan, M.; Liu, J.; Che, R. Insights into civilian electromagnetic absorption materials: challenges and innovative
                  solutions. Adv. Funct. Mater. 2025, 35, 2315722. DOI
               47.  Ren, S.; Yu, H.; Wang, L.; et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials.
                  Nano-Micro. Lett. 2022, 14, 68. DOI PubMed PMC
   151   152   153   154   155   156   157   158   159   160   161