Page 155 - Read Online
P. 155

Ding et al. Soft Sci. 2026, 6, 2                                                 Page 13 of 15





               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2026.


               REFERENCES
               1.  Wang, J.; Wang, B.; Wang, Z.; et al. Synthesis of 3D flower-like ZnO/ZnCo 2 O 4  composites with the heterogeneous interface for
                  excellent electromagnetic wave absorption properties. J. Colloid. Interface. Sci. 2021, 586, 479-90. DOI PubMed
               2.  Zhang, S.; Lan, D.; Zheng, J.; et al. Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 2024, 221,
                  118925. DOI
               3.  Liu, Y.; Tian, C.; Wang, F.; et al. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe 3 O 4 @C
                  microcapsules: composition regulation on magnetic core and MoS 2  nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.
                  DOI
               4.  Qu, N.; Xu, G.; Liu, Y.; et al. Multi-scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv.
                  Funct. Mater. 2025, 35, 2402923. DOI
               5.  Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic
                  wave absorption. Sci. Bull. 2023, 68, 1195-212. DOI PubMed
               6.  Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 2022, 127,
                  100946. DOI
               7.  Wu, Q.; Ma, Z.; Wang, C.; et al. Carbon nanofibers with small-sized Co nanoparticles and structural defects via a confined-coordination
                  growth strategy toward electromagnetic wave absorption. J. Adv. Ceram. 2025, 14, 9221210. DOI
               8.  Huang, M.; Wang, L.; You, W.; Che, R. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic
                  core as an ultrawideband microwave absorber. Small 2021, 17, e2101416. DOI PubMed
               9.  Lin, Y.; Zhou, X.; Wang, Y.; et al. Progress of MOFs composites in the field of microwave absorption. Carbon 2025, 238, 120241. DOI
               10.  Liu, A.; Xu, X.; Qiu, H.; et al. Bioinspired hollow heterostructure fillers for enhanced electromagnetic interference shielding in
                  polyimide aerogels. InfoMat 2025, 7, e70060. DOI
               11.  Lou, Z.; Wang, Q.; Kara, U. I.; et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband
                  electromagnetic wave absorbers. Nano-Micro. Lett. 2021, 14, 11. DOI PubMed PMC
               12.  Wen, B.; Cao, M.; Lu, M.; et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at
                  elevated temperatures. Adv. Mater. 2014, 26, 3484-9. DOI PubMed
               13.  Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like
                  PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2025, 35, 2316722. DOI
               14.  Zhao, T.; Jia, Z.; Zhang, Y.; Wu, G. Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique
                  double-shell structure in microwave absorption. Small 2023, 19, e2206323. DOI PubMed
               15.  Gang, S.; He, H.; Long, H.; et al. 2D-high entropy alloys embedded in 3D-carbon foam towards light-weight electromagnetic wave
                  absorption and hydrophobic thermal insulation. Nano. Energy. 2025, 135, 110642. DOI
               16.  Zhu, Y.; Liu, T.; Li, L.; Cao, M. Multifunctional WSe 2 /Co 3 C composite for efficient electromagnetic absorption, EMI shielding, and
                  energy conversion. Nano. Res. 2024, 17, 1655-65. DOI
               17.  Liu, P.; He, Z.; Li, X.; Ding, L.; Liu, S.; Kong, J. Multifunctional hollow carbon microspheres enable superior electromagnetic wave
                  response and corrosion barrier. Adv. Mater. 2025, 37, e2500646. DOI PubMed
               18.  Li, L.; Ban, Q.; Song, Y.; et al. Self-templating engineering of hollow N-doped carbon microspheres anchored with ternary FeCoNi
                  alloys for low-frequency microwave absorption. Small 2024, 20, e2406602. DOI PubMed
               19.  Huang, H.; Wang, Y.; Yuan, S.; et al. Heteroatom-doped hollow bimetallic carbon nanofibers induce polarization-dominated multiple
                  loss mechanisms for microwave absorption. Chem. Eng. J. 2025, 507, 160683. DOI
               20.  Shao, C.; Liu, H.; Shi, Y.; Tian, N.; You, C.; Zhao, Z. Dielectric-magnetic synergy in ferrite/carbon composites for electromagnetic
                  microwave absorption. Nano. Res. 2025, 18, 94907815. DOI
               21.  Wu, Z.; Cheng, H. W.; Jin, C.; et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave
                  absorption. Adv. Mater. 2022, 34, e2107538. DOI PubMed
   150   151   152   153   154   155   156   157   158   159   160