Page 106 - Read Online
P. 106

Kulkarni et al. Soft Sci. 2025, 5, 12  https://dx.doi.org/10.20517/ss.2023.51   Page 27 of 35

                    557-61.  DOI
               51.       Li, J.; Li, X.; Luo, T.; et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3,
                    eaat8829.  DOI
               52.       Breger, J. C.; Yoon, C.; Xiao, R.; et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS. Appl. Mater. Interfaces.
                    2015, 7, 3398-405.  DOI  PubMed  PMC
               53.       Del, C. F. A.; Glück, C.; Droux, J.; et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat.
                    Commun. 2023, 14, 5889.  DOI  PubMed  PMC
               54.       Power, M.; Thompson, A. J.; Anastasova, S.; Yang, G. Z. A monolithic force-sensitive 3D microgripper fabricated on the tip of an
                    optical fiber using 2-photon polymerization. Small 2018, 14, e1703964.  DOI  PubMed
               55.       Kim, Y.; Zhao, X. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317-64.  DOI  PubMed  PMC
               56.       Li, Y.; Huang, G.; Zhang, X.; et al. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23,
                    660-72.  DOI
               57.       Zhang, J.; Diller, E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet. Soft.
                    Robot.2018, 761-76.  DOI
               58.       Blumenschein, L. H.; Gan, L. T.; Fan, J. A.; Okamura, A. M.; Hawkes, E. W. A tip-extending soft robot enables reconfigurable and
                    deployable antennas. IEEE. Robot. Autom. Lett. 2018, 3, 949-56.  DOI
               59.       Zhong, T.; Wei, F. A jumping soft robot driven by magnetic field. In: Liu X, Nie Z, Yu J, Xie F, Song R, editors. Intelligent Robotics
                    and Applications. Cham: Springer International Publishing; 2021. pp. 267-74.  DOI
               60.       Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415.  DOI  PubMed
               61.       Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, e1801368.  DOI
               62.       Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid. Commun. 2010, 31, 10-
                    36.  DOI  PubMed
               63.       Shintake, J.; Shea, H.; Floreano, D. Biomimetic underwater robots based on dielectric elastomer actuators. In: 2016 IEEE/RSJ
                    International Conference on Intelligent Robots and Systems (IROS); Daejeon, South Korea. IEEE; 2016. pp. 4957-62.  DOI
               64.       Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric elastomer artificial muscle: materials innovations and device explorations.
                    Acc. Chem. Res. 2019, 52, 316-25.  DOI
               65.       Park, S. W.; Kim, S. J.; Park, S. H.; Lee, J.; Kim, H.; Kim, M. K. Recent progress in development and applications of ionic polymer-
                    metal composite. Micromachines 2022, 13, 1290.  DOI  PubMed  PMC
               66.       Branz, F.; Francesconi, A. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta. Astronaut.
                    2017, 133, 324-33.  DOI
               67.       Vahabi, M.; Mehdizadeh, E.; Kabganian, M.; Barazandeh, F. Design and modeling of a novel in-pipe microrobot using IPMC
                    actuators. [Internet]. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis; Istanbul, Turkey.
                    ASMEDC; 2010. pp. 281-8.  DOI
               68.       Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.
                    DOI
               69.       Jiang, W.; Niu, D.; Liu, H.; et al. Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct.
                    Mater. 2014, 24, 7598-604.  DOI
               70.       Jiang, Z. C.; Xiao, Y. Y.; Tong, X.; Zhao, Y. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration
                    of origami and light-fueled locomotion. Angew. Chem. Int. Ed. 2019, 131, 5386-91.  DOI
               71.       Ahn, C.; Liang, X.; Cai, S. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater.
                    Technol. 2019, 4, 1900185.  DOI
               72.       Wu, J.; Ai, W.; Hou, K.; Zhang, C.; Long, Y.; Song, K. Light-driven soft climbing robot based on negative pressure adsorption.
                    Chem. Eng. J. 2023, 466, 143131.  DOI
               73.       De, S.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels:
                    models, experiments, and simulations. J. Microelectromech. Syst. 2002, 11, 544-55.  DOI
               74.       Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144-76.  DOI
               75.       Xu,  P.;  Van,  K.  E.  A.;  Murdoch,  W.  J.;  et  al.  Anticancer  efficacies  of  cisplatin-releasing  pH-responsive  nanoparticles.
                    Biomacromolecules 2006, 7, 829-35.  DOI  PubMed  PMC
               76.       Loepfe, M. Combustion-driven soft machines: design, manufacturing and application. 2016. Available from: https://www.research-
                    collection.ethz.ch/bitstream/handle/20.500.11850/117172/eth-49181-01.pdf. [Last accessed on 13 Jan 2025].
               77.       Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug. Discov. Today. 2002, 7,
                    569-79.  DOI  PubMed
               78.       He, Z.; Yang, Y.; Jiao, P.; Wang, H.; Lin, G.; Pähtz, T. Copebot: underwater soft robot with copepod-like locomotion. Soft. Robot.
                    2023, 10, 314-25.  DOI
               79.       Tolley, M. T.; Shepherd, R. F.; Karpelson, M.; et al. An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference
                    on Intelligent Robots and Systems; Chicago, USA. IEEE; 2014. pp. 561-6.  DOI
               80.       Xian, S.; Webber, M. J. Temperature-responsive supramolecular hydrogels. J. Mater. Chem. B. 2020, 8, 9197-211.  DOI  PubMed
               81.       Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468-83.  DOI
                    PubMed
   101   102   103   104   105   106   107   108   109   110   111