Page 106 - Read Online
P. 106
Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51 Page 27 of 35
557-61. DOI
51. Li, J.; Li, X.; Luo, T.; et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3,
eaat8829. DOI
52. Breger, J. C.; Yoon, C.; Xiao, R.; et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS. Appl. Mater. Interfaces.
2015, 7, 3398-405. DOI PubMed PMC
53. Del, C. F. A.; Glück, C.; Droux, J.; et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat.
Commun. 2023, 14, 5889. DOI PubMed PMC
54. Power, M.; Thompson, A. J.; Anastasova, S.; Yang, G. Z. A monolithic force-sensitive 3D microgripper fabricated on the tip of an
optical fiber using 2-photon polymerization. Small 2018, 14, e1703964. DOI PubMed
55. Kim, Y.; Zhao, X. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317-64. DOI PubMed PMC
56. Li, Y.; Huang, G.; Zhang, X.; et al. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23,
660-72. DOI
57. Zhang, J.; Diller, E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet. Soft.
Robot.2018, 761-76. DOI
58. Blumenschein, L. H.; Gan, L. T.; Fan, J. A.; Okamura, A. M.; Hawkes, E. W. A tip-extending soft robot enables reconfigurable and
deployable antennas. IEEE. Robot. Autom. Lett. 2018, 3, 949-56. DOI
59. Zhong, T.; Wei, F. A jumping soft robot driven by magnetic field. In: Liu X, Nie Z, Yu J, Xie F, Song R, editors. Intelligent Robotics
and Applications. Cham: Springer International Publishing; 2021. pp. 267-74. DOI
60. Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415. DOI PubMed
61. Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, e1801368. DOI
62. Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid. Commun. 2010, 31, 10-
36. DOI PubMed
63. Shintake, J.; Shea, H.; Floreano, D. Biomimetic underwater robots based on dielectric elastomer actuators. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS); Daejeon, South Korea. IEEE; 2016. pp. 4957-62. DOI
64. Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric elastomer artificial muscle: materials innovations and device explorations.
Acc. Chem. Res. 2019, 52, 316-25. DOI
65. Park, S. W.; Kim, S. J.; Park, S. H.; Lee, J.; Kim, H.; Kim, M. K. Recent progress in development and applications of ionic polymer-
metal composite. Micromachines 2022, 13, 1290. DOI PubMed PMC
66. Branz, F.; Francesconi, A. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta. Astronaut.
2017, 133, 324-33. DOI
67. Vahabi, M.; Mehdizadeh, E.; Kabganian, M.; Barazandeh, F. Design and modeling of a novel in-pipe microrobot using IPMC
actuators. [Internet]. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis; Istanbul, Turkey.
ASMEDC; 2010. pp. 281-8. DOI
68. Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.
DOI
69. Jiang, W.; Niu, D.; Liu, H.; et al. Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct.
Mater. 2014, 24, 7598-604. DOI
70. Jiang, Z. C.; Xiao, Y. Y.; Tong, X.; Zhao, Y. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration
of origami and light-fueled locomotion. Angew. Chem. Int. Ed. 2019, 131, 5386-91. DOI
71. Ahn, C.; Liang, X.; Cai, S. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater.
Technol. 2019, 4, 1900185. DOI
72. Wu, J.; Ai, W.; Hou, K.; Zhang, C.; Long, Y.; Song, K. Light-driven soft climbing robot based on negative pressure adsorption.
Chem. Eng. J. 2023, 466, 143131. DOI
73. De, S.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels:
models, experiments, and simulations. J. Microelectromech. Syst. 2002, 11, 544-55. DOI
74. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144-76. DOI
75. Xu, P.; Van, K. E. A.; Murdoch, W. J.; et al. Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles.
Biomacromolecules 2006, 7, 829-35. DOI PubMed PMC
76. Loepfe, M. Combustion-driven soft machines: design, manufacturing and application. 2016. Available from: https://www.research-
collection.ethz.ch/bitstream/handle/20.500.11850/117172/eth-49181-01.pdf. [Last accessed on 13 Jan 2025].
77. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug. Discov. Today. 2002, 7,
569-79. DOI PubMed
78. He, Z.; Yang, Y.; Jiao, P.; Wang, H.; Lin, G.; Pähtz, T. Copebot: underwater soft robot with copepod-like locomotion. Soft. Robot.
2023, 10, 314-25. DOI
79. Tolley, M. T.; Shepherd, R. F.; Karpelson, M.; et al. An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems; Chicago, USA. IEEE; 2014. pp. 561-6. DOI
80. Xian, S.; Webber, M. J. Temperature-responsive supramolecular hydrogels. J. Mater. Chem. B. 2020, 8, 9197-211. DOI PubMed
81. Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468-83. DOI
PubMed

