Page 108 - Read Online
P. 108
Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51 Page 29 of 35
pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert. Opin. Drug. Metab. Toxicol.
2021, 17, 1103-24. DOI PubMed
112. Baldwin, D. R.; Marshall, W. J. Heavy metal poisoning and its laboratory investigation. Ann. Clin. Biochem. 1999, 36, 267-300. DOI
PubMed
113. Su, Y.; Ma, C.; Chen, J.; et al. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a
review. Nanoscale. Res. Lett. 2020, 15, 200. DOI PubMed PMC
114. Ogunrinola, G. A.; Oyewale, J. O.; Oshamika, O. O.; Olasehinde, G. I. The human microbiome and its impacts on health. Int. J.
Microbiol. 2020, 2020, 8045646. DOI PubMed PMC
115. Zhang, Y. J.; Li, S.; Gan, R. Y.; Zhou, T.; Xu, D. P.; Li, H. B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci.
2015, 16, 7493-519. DOI PubMed PMC
116. Zrinscak, D.; Lorenzon, L.; Maselli, M.; Cianchetti, M. Soft robotics for physical simulators, artificial organs and implantable
assistive devices. Prog. Biomed. Eng. 2023, 5, 012002. DOI
117. Runciman, M.; Darzi, A.; Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft. Robot. 2019, 6, 423-43. DOI PubMed
PMC
118. Banerjee, S.; Saharan, V. A. Soft robots for the delivery of drugs. In: Saharan VA, editor. Computer aided pharmaceutics and drug
delivery. Singapore: Springer Nature; 2022. pp. 415-38. DOI
119. Marchese, A. D.; Katzschmann, R. K.; Rus, D. A recipe for soft fluidic elastomer robots. Soft. Robot. 2015, 2, 7-25. DOI PubMed
PMC
120. Andriot, M.; DeGroot, J. V.; Meeks, R.; et al. Silicones in industrial applications. 2009. Available from: https://www.researchgate.
net/publication/251935579_Silicones_in_Industrial_Applications. [Last accessed on 13 Jan 2025].
121. Elango, N.; Faudzi, A. A. M. A review article: investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf.
Technol. 2015, 80, 1027-37. DOI
122. Krpovic, S.; Dam-Johansen, K.; Skov, A. L. Importance of Mullins effect in commercial silicone elastomer formulations for soft
robotics. J. Appl. Polym. Sci. 2021, 138, 50380. DOI
123. Garcia, L.; Kerns, G.; O’Reilley, K.; et al. The role of soft robotic micromachines in the future of medical devices and personalized
medicine. Micromachines 2021, 13, 28. DOI PubMed PMC
124. Banerjee, H.; Suhail, M.; Ren, H. Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending
challenges. Biomimetics 2018, 3, 15. DOI PubMed PMC
125. Ionov, L. Hydrogel-based actuators: possibilities and limitations. Mater. Today. 2014, 17, 494-503. DOI
126. Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.; Xu, F. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical
applications. NPG. Asia. Mater. 2019, 11, 165. DOI
127. Mishra, A. K.; Wallin, T. J.; Pan, W.; et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918.
DOI
128. Tang, N.; Peng, Z.; Guo, R.; et al. Thermal transport in soft PAAm hydrogels. Polymers 2017, 9, 688. DOI PubMed PMC
129. Edward, S.; Golecki, H. M. Gelatin soft actuators: benefits and opportunities. Actuators 2023, 12, 63. DOI
130. Azevedo, H. S.; Santos, T. C.; Reis, R. L. 4 - Controlling the degradation of natural polymers for biomedical applications. In:
Natural-based polymers for biomedical applications. Elsevier; 2008. pp. 106-28. DOI
131. El-atab, N.; Mishra, R. B.; Al-modaf, F.; et al. Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2020, 2,
2000128. DOI
132. Byrne, O.; Coulter, F.; Glynn, M.; et al. Additive manufacture of composite soft pneumatic actuators. Soft. Robot. 2018, 5, 726-36.
DOI
133. Liang, W.; Liu, H.; Wang, K.; Qian, Z.; Ren, L.; Ren, L. Comparative study of robotic artificial actuators and biological muscle. Adv.
Mech. Eng. 2020, 12, 1687814020933409. DOI
134. Yan, B. Actuators for implantable devices: a broad view. Micromachines 2022, 13, 1756. DOI PubMed PMC
135. Rusu, D. M.; Mândru, S. D.; Biriș, C. M.; Petrașcu, O. L.; Morariu, F.; Ianosi-Andreeva-Dimitrova, A. Soft robotics: a systematic
review and bibliometric analysis. Micromachines 2023, 14, 359. DOI PubMed PMC
136. Hu, L.; Bonnemain, J.; Saeed, M. Y.; et al. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory
insufficiency. Nat. Biomed. Eng. 2023, 7, 110-23. DOI PubMed PMC
137. Zaidi, S.; Maselli, M.; Laschi, C.; Cianchetti, M. Actuation technologies for soft robot grippers and manipulators: a review. Curr.
Robot. Rep. 2021, 2, 355-69. DOI
138. Shi, H.; Tan, K.; Zhang, B.; Liu, W. Review on research progress of hydraulic powered soft actuators. Energies 2022, 15, 9048. DOI
139. Runciman, M.; Franco, E.; Avery, J.; Rodriguez, B. F.; Mylonas, G. Model based position control of soft hydraulic actuators. In:
2023 IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2676-82. DOI
140. Thai, M. T.; Phan, P. T.; Hoang, T. T.; Low, H.; Lovell, N. H.; Do, T. N. Design, fabrication, and hysteresis modeling of soft
microtubule artificial muscle (SMAM) for medical applications. IEEE. Robot. Autom. Lett. 2021, 6, 5089-96. DOI
141. Lee, J. G.; Raj, R. R.; Thome, C. P.; et al. Bubble-based microrobots with rapid circular motions for epithelial pinning and drug
delivery. Small 2023, 19, e2300409. DOI PubMed PMC
142. Deng, N.; Li, J.; Lyu, H.; Huang, R.; Liu, H.; Guo, C. Degradable silk-based soft actuators with magnetic responsiveness. J. Mater.
Chem. B. 2022, 10, 7650-60. DOI

