Page 111 - Read Online
P. 111
Page 32 of 35 Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51
203. Fan, W.; He, Q.; Meng, K.; et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal
monitoring. Sci. Adv. 2020, 6, eaay2840. DOI PubMed PMC
204. Akbari, A.; Chhabra, P. S.; Bhandari, U.; Bernardini, S. Intelligent exploration and autonomous navigation in confined spaces. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Las Vegas, USA. IEEE; 2020. pp. 2157-64.
DOI
205. Greer, D.; McKerrow, P.; Abrantes, J. Robots in urban search and rescue operations. In: Australasian Conference on Robotics and
Automation. Auckland. 2002. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
f89059556985a4456bd84591aeca6879ba549c97. [Last accessed on 13 Jan 2025].
206. Blumenschein, L. H.; Koehler, M.; Usevitch, N. S.; Hawkes, E. W.; Rucker, D. C.; Okamura, A. M. Geometric solutions for general
actuator routing on inflated-beam soft growing robots. IEEE. Trans. Robot. 2022, 38, 1820-40. DOI
207. El-Hussieny, H.; Hameed, I. A.; Zaky, A. B. Plant-inspired soft growing robots: a control approach using nonlinear model predictive
techniques. Appl. Sci. 2023, 13, 2601. DOI
208. Liu, X.; Song, M.; Fang, Y.; Zhao, Y.; Cao, C. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Adv. Intell.
Syst. 2022, 4, 2100128. DOI
209. Wang, N.; Zhang, Y.; Zhang, G.; Zhao, W.; Peng, L. Development and analysis of key components of a multi motion mode soft-
bodied pipe robot. Actuators 2022, 11, 125. DOI
210. Yeh, C.; Chen, C.; Juang, J. Soft hopping and crawling robot for in-pipe traveling. Extreme. Mech. Lett. 2020, 39, 100854. DOI
211. Singh, G.; Patiballa, S.; Zhang, X.; Krishnan, G. A pipe-climbing soft robot. In: 2019 International Conference on Robotics and
Automation (ICRA); Montreal, Canada. IEEE; 2019. pp. 8450-6. DOI
212. Saleeby, K. S. Design of soft-body robot with wireless communication for leak detection in large diameter pipe systems. 2017.
Available from: https://dspace.mit.edu/handle/1721.1/112547. [Last accessed on 13 Jan 2025].
213. Wang, J.; Song, Y.; Zadan, M.; et al. Wireless actuation for soft electronics-free robots. In: Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking. Madrid; Spain. ACM; 2023. pp. 1-16. DOI
214. Usevitch, N. S.; Hammond, Z. M.; Schwager, M.; Okamura, A. M.; Hawkes, E. W.; Follmer, S. An untethered isoperimetric soft
robot. Sci. Robot. 2020, 5, eaaz0492. DOI PubMed
215. Shepherd, R. F.; Stokes, A. A.; Freake, J.; et al. Using explosions to power a soft robot. Angew. Chem. Int. Ed. Engl. 2013, 52, 2892-
6. DOI
216. Mazzolai, B.; Mondini, A.; Tramacere, F.; et al. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined
environments. Adv. Intell. Syst. 2019, 1, 1900041. DOI
217. Khatib, M.; Zohar, O.; Haick, H. Self-healing soft sensors: from material design to implementation. Adv. Mater. 2021, 33, e2004190.
DOI PubMed
218. Zhang, W.; Wu, B.; Sun, S.; Wu, P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic
network. Nat. Commun. 2021, 12, 4082. DOI PubMed PMC
219. Georgopoulou, A.; Bosman, A. W.; Brancart, J.; Vanderborght, B.; Clemens, F. Supramolecular self-healing sensor fiber composites
for damage detection in piezoresistive electronic skin for soft robots. Polymers 2021, 13, 2983. DOI PubMed PMC
220. Laschi, C.; Thuruthel, T. G.; Lida, F.; Merzouki, R.; Falotico, E. Learning-based control strategies for soft robots: theory,
achievements, and future challenges. IEEE. Control. Syst. 2023, 43, 100-13. DOI
221. Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends. Biotechnol. 2013, 31, 287-94. DOI
PubMed
222. Villanueva, A.; Smith, C.; Priya, S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators.
Bioinspir. Biomim. 2011, 6, 036004. DOI
223. Zhang, H.; Kumar, A. S.; Fuh, J. Y. H.; Wang, M. Y. Design and development of a topology-optimized three-dimensional printed
soft gripper. Soft. Robot. 2018, 5, 650-61. DOI PubMed
224. Chen, F.; Wang, M. Y. Design optimization of soft robots: a review of the state of the art. IEEE. Robot. Automat. Mag. 2020, 27, 27-
43. DOI
225. Zhu, J.; Zhang, W.; Xia, L. Topology optimization in aircraft and aerospace structures design. Arch. Computat. Methods. Eng. 2016,
23, 595-622. DOI
226. Yang, R. J.; Chahande, A. I. Automotive applications of topology optimization. Struct. Optim. 1995, 9, 245-9. DOI
227. Golecki, T.; Gomez, F.; Carrion, J.; Spencer, B. F. Bridge topology optimization considering stochastic moving traffic. Eng. Struct.
2023, 292, 116498. DOI
228. Liu, C. H.; Chen, T. L.; Chiu, C. H.; et al. Optimal design of a soft robotic gripper for grasping unknown objects. Soft. Robot. 2018,
5, 452-65. DOI
229. Chen, F.; Xu, W.; Zhang, H.; et al. Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE.
Robot. Autom. Lett. 2018, 3, 2463-70. DOI
230. Xing, J.; Luo, Y.; Deng, Y.; Wu, S.; Gai, Y. Topology optimization design of deformable flexible thermoelectric devices for voltage
enhancement. Eng. Optim. 2023, 55, 1686-703. DOI
231. Sanders, E. D.; Pereira, A.; Paulino, G. H. Optimal and continuous multilattice embedding. Sci. Adv. 2021, 7, eabf4838. DOI
PubMed PMC
232. Wallin, M.; Tortorelli, D. A. Nonlinear homogenization for topology optimization. Mech. Mater. 2020, 145, 103324. DOI

