Page 110 - Read Online
P. 110
Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51 Page 31 of 35
173. Hu, F.; Kou, Z.; Sefene, E. M.; Mikolajczyk, T. An origami flexiball-inspired soft robotic jellyfish. JMSE. 2023, 11, 714. DOI
174. Ma, H.; Zhou, J. Modeling, characterization, and application of soft bellows-type pneumatic actuators for bionic locomotion. Acta.
Mech. Solida. Sin. 2023, 36, 1-12. DOI
175. Chen, S.; Xu, H.; Xiong, X.; Lu, B. An underwater jet-propulsion soft robot with high flexibility driven by water hydraulics. In: 2023
IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2613-9. DOI
176. Rajput G, Vora J, Prajapati P, Chaudhari R. Areas of recent developments for shape memory alloy: a review. Mater. Today. Proc.
2022, 62, 7194-8. DOI
177. Ulloa C, Terrile S, Barrientos A. Soft underwater robot actuated by shape-memory alloys “JellyRobcib” for path tracking through
fuzzy visual control. Appl. Sci. 2020, 10, 7160. DOI
178. Gu, G. Y.; Zhu, J.; Zhu, L. M.; Zhu, X. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 2017, 12,
011003. DOI
179. Wang, Y.; Ma, X.; Jiang, Y.; et al. Dielectric elastomer actuators for artificial muscles: a comprehensive review of soft robot
explorations. Res. Chem. Mater. 2022, 1, 308-24. DOI
180. Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft. Robot.
2018, 5, 466-74. DOI PubMed PMC
181. Christianson, C.; Goldberg, N. N.; Deheyn, D. D.; Cai, S.; Tolley, M. T. Translucent soft robots driven by frameless fluid electrode
dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893. DOI PubMed
182. Fu, R.; Guan, Y.; Xiao, C.; et al. Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small. Methods.
2022, 6, e2101513. DOI
183. Qi, X.; Zhao, H.; Wang, L.; et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J.
2022, 437, 135382. DOI
184. Lin, Y.; Siddall, R.; Schwab, F.; et al. Modeling and control of a soft robotic fish with integrated soft sensing. Adv. Intell. Syst. 2023,
5, 2000244. DOI
185. Hao, M.; Wang, Y.; Zhu, Z.; He, Q.; Zhu, D.; Luo, M. A compact review of IPMC as soft actuator and sensor: current trends,
challenges, and potential solutions from our recent work. Front. Robot. AI. 2019, 6, 129. DOI PubMed PMC
186. Shen, Q.; Wang, T.; Kim, K. J. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
Bioinspir. Biomim. 2015, 10, 055007. DOI
187. Minaian, N.; Olsen, Z. J.; Kim, K. J. Ionic polymer-metal composite (IPMC) artificial muscles in underwater environments: review of
actuation, sensing, controls, and applications to soft robotics. In: Paley DA, Wereley NM, editors. Bioinspired sensing, actuation, and
control in underwater soft robotic systems. Cham: Springer International Publishing; 2021. pp. 117-39. DOI
188. Abdulsadda, A. T.; Tan, X. Underwater source localization using an IPMC-based artificial lateral line. In: 2011 IEEE International
Conference on Robotics and Automation; Shanghai, China. IEEE; 2011. pp. 2719-24. DOI
189. Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced materials for next-generation spacecraft. Adv. Mater. 2018,
30, e1802201. DOI PubMed
190. Araromi, O. A.; Gavrilovich, I.; Shintake, J.; et al. Rollable multisegment dielectric elastomer minimum energy structures for a
deployable microsatellite gripper. IEEE/ASME. Trans. Mechatron. 2015, 20, 438-46. DOI
191. Ogliani, E.; Yu, L.; Mazurek, P.; Skov, A. L. Designing reliable silicone elastomers for high-temperature applications. Polym.
Degrad. Stab. 2018, 157, 175-80. DOI
192. Porte, E.; Eristoff, S.; Agrawala, A.; Kramer-Bottiglio, R. Characterization of temperature and humidity dependence in soft elastomer
behavior. Soft. Robot. 2024, 11, 118-30. DOI PubMed PMC
193. Mirvakili, S. M.; Leroy, A.; Sim, D.; Wang, E. N. Solar-driven soft robots. Adv. Sci. 2021, 8, 2004235. DOI PubMed PMC
194. Menon, C.; Carpi, F.; De, R. D. Concept design of novel bio-inspired distributed actuators for space applications. Acta. Astronautica.
2009, 65, 825-33. DOI
195. Jing, Z.; Li, Q.; Su, W.; Chen, Y. Dielectric elastomer-driven bionic inchworm soft robot realizes forward and backward movement
and jump. Actuators 2022, 11, 227. DOI
196. Romano, D.; Di, G. A.; Pucciariello, C.; Stefanini, C. Turning earthworms into moonworms: earthworms colonization of lunar
regolith as a bioengineering approach supporting future crop growth in space. Heliyon 2023, 9, e14683. DOI PubMed PMC
197. Giordano, M.; Ciriello, M.; Formisano, L.; et al. Iodine-biofortified microgreens as high nutraceutical value component of space
mission crew diets and candidate for extraterrestrial cultivation. Plants 2023, 12, 2628. DOI PubMed PMC
198. Caporale, A. G.; Paradiso, R.; Liuzzi, G.; Arouna, N.; De, P. S.; Adamo, P. Can peat amendment of mars regolith simulant allow
soybean cultivation in mars bioregenerative life support systems? Plants 2022, 12, 64. DOI PubMed PMC
199. Hammond, M.; Dempsey, A.; Ward, W.; et al. A hybrid soft material robotic end-effector for reversible in-space assembly of strut
components. Front. Robot. AI. 2023, 10, 1099297. DOI PubMed PMC
200. Molaei, P.; Pitts, N. A.; Palardy, G.; et al. Cable decoupling and cable-based stiffening of continuum robots. IEEE. Access. 2022, 10,
104852-62. DOI
201. Krishen, K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta. Astronautica. 2009,
64, 1160-6. DOI
202. Fu, M.; Zhang, J.; Jin, Y.; Zhao, Y.; Huang, S.; Guo, C. F. A highly sensitive, reliable, and high-temperature-resistant flexible
pressure sensor based on ceramic nanofibers. Adv. Sci. 2020, 7, 2000258. DOI PubMed PMC

