Page 110 - Read Online
P. 110

Kulkarni et al. Soft Sci. 2025, 5, 12  https://dx.doi.org/10.20517/ss.2023.51   Page 31 of 35

               173.      Hu, F.; Kou, Z.; Sefene, E. M.; Mikolajczyk, T. An origami flexiball-inspired soft robotic jellyfish. JMSE. 2023, 11, 714.  DOI
               174.      Ma, H.; Zhou, J. Modeling, characterization, and application of soft bellows-type pneumatic actuators for bionic locomotion. Acta.
                    Mech. Solida. Sin. 2023, 36, 1-12.  DOI
               175.      Chen, S.; Xu, H.; Xiong, X.; Lu, B. An underwater jet-propulsion soft robot with high flexibility driven by water hydraulics. In: 2023
                    IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2613-9.  DOI
               176.      Rajput G, Vora J, Prajapati P, Chaudhari R. Areas of recent developments for shape memory alloy: a review. Mater. Today. Proc.
                    2022, 62, 7194-8.  DOI
               177.      Ulloa C, Terrile S, Barrientos A. Soft underwater robot actuated by shape-memory alloys “JellyRobcib” for path tracking through
                    fuzzy visual control. Appl. Sci. 2020, 10, 7160.  DOI
               178.      Gu, G. Y.; Zhu, J.; Zhu, L. M.; Zhu, X. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 2017, 12,
                    011003.  DOI
               179.      Wang, Y.; Ma, X.; Jiang, Y.; et al. Dielectric elastomer actuators for artificial muscles: a comprehensive review of soft robot
                    explorations. Res. Chem. Mater. 2022, 1, 308-24.  DOI
               180.      Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft. Robot.
                    2018, 5, 466-74.  DOI  PubMed  PMC
               181.      Christianson, C.; Goldberg, N. N.; Deheyn, D. D.; Cai, S.; Tolley, M. T. Translucent soft robots driven by frameless fluid electrode
                    dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893.  DOI  PubMed
               182.      Fu, R.; Guan, Y.; Xiao, C.; et al. Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small. Methods.
                    2022, 6, e2101513.  DOI
               183.      Qi, X.; Zhao, H.; Wang, L.; et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J.
                    2022, 437, 135382.  DOI
               184.      Lin, Y.; Siddall, R.; Schwab, F.; et al. Modeling and control of a soft robotic fish with integrated soft sensing. Adv. Intell. Syst. 2023,
                    5, 2000244.  DOI
               185.      Hao, M.; Wang, Y.; Zhu, Z.; He, Q.; Zhu, D.; Luo, M. A compact review of IPMC as soft actuator and sensor: current trends,
                    challenges, and potential solutions from our recent work. Front. Robot. AI. 2019, 6, 129.  DOI  PubMed  PMC
               186.      Shen, Q.; Wang, T.; Kim, K. J. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
                    Bioinspir. Biomim. 2015, 10, 055007.  DOI
               187.      Minaian, N.; Olsen, Z. J.; Kim, K. J. Ionic polymer-metal composite (IPMC) artificial muscles in underwater environments: review of
                    actuation, sensing, controls, and applications to soft robotics. In: Paley DA, Wereley NM, editors. Bioinspired sensing, actuation, and
                    control in underwater soft robotic systems. Cham: Springer International Publishing; 2021. pp. 117-39.  DOI
               188.      Abdulsadda, A. T.; Tan, X. Underwater source localization using an IPMC-based artificial lateral line. In: 2011 IEEE International
                    Conference on Robotics and Automation; Shanghai, China. IEEE; 2011. pp. 2719-24.  DOI
               189.      Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced materials for next-generation spacecraft. Adv. Mater. 2018,
                    30, e1802201.  DOI  PubMed
               190.      Araromi, O. A.; Gavrilovich, I.; Shintake, J.; et al. Rollable multisegment dielectric elastomer minimum energy structures for a
                    deployable microsatellite gripper. IEEE/ASME. Trans. Mechatron. 2015, 20, 438-46.  DOI
               191.      Ogliani, E.; Yu, L.; Mazurek, P.; Skov, A. L. Designing reliable silicone elastomers for high-temperature applications. Polym.
                    Degrad. Stab. 2018, 157, 175-80.  DOI
               192.      Porte, E.; Eristoff, S.; Agrawala, A.; Kramer-Bottiglio, R. Characterization of temperature and humidity dependence in soft elastomer
                    behavior. Soft. Robot. 2024, 11, 118-30.  DOI  PubMed  PMC
               193.      Mirvakili, S. M.; Leroy, A.; Sim, D.; Wang, E. N. Solar-driven soft robots. Adv. Sci. 2021, 8, 2004235.  DOI  PubMed  PMC
               194.      Menon, C.; Carpi, F.; De, R. D. Concept design of novel bio-inspired distributed actuators for space applications. Acta. Astronautica.
                    2009, 65, 825-33.  DOI
               195.      Jing, Z.; Li, Q.; Su, W.; Chen, Y. Dielectric elastomer-driven bionic inchworm soft robot realizes forward and backward movement
                    and jump. Actuators 2022, 11, 227.  DOI
               196.      Romano, D.; Di, G. A.; Pucciariello, C.; Stefanini, C. Turning earthworms into moonworms: earthworms colonization of lunar
                    regolith as a bioengineering approach supporting future crop growth in space. Heliyon 2023, 9, e14683.  DOI  PubMed  PMC
               197.      Giordano, M.; Ciriello, M.; Formisano, L.; et al. Iodine-biofortified microgreens as high nutraceutical value component of space
                    mission crew diets and candidate for extraterrestrial cultivation. Plants 2023, 12, 2628.  DOI  PubMed  PMC
               198.      Caporale, A. G.; Paradiso, R.; Liuzzi, G.; Arouna, N.; De, P. S.; Adamo, P. Can peat amendment of mars regolith simulant allow
                    soybean cultivation in mars bioregenerative life support systems? Plants 2022, 12, 64.  DOI  PubMed  PMC
               199.      Hammond, M.; Dempsey, A.; Ward, W.; et al. A hybrid soft material robotic end-effector for reversible in-space assembly of strut
                    components. Front. Robot. AI. 2023, 10, 1099297.  DOI  PubMed  PMC
               200.      Molaei, P.; Pitts, N. A.; Palardy, G.; et al. Cable decoupling and cable-based stiffening of continuum robots. IEEE. Access. 2022, 10,
                    104852-62.  DOI
               201.      Krishen, K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta. Astronautica. 2009,
                    64, 1160-6.  DOI
               202.      Fu, M.; Zhang, J.; Jin, Y.; Zhao, Y.; Huang, S.; Guo, C. F. A highly sensitive, reliable, and high-temperature-resistant flexible
                    pressure sensor based on ceramic nanofibers. Adv. Sci. 2020, 7, 2000258.  DOI  PubMed  PMC
   105   106   107   108   109   110   111   112   113   114   115