Page 109 - Read Online
P. 109
Page 30 of 35 Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51
143. Yang, Z.; Zhang, L. Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2020, 2, 2000082. DOI
144. Hu, X.; Zhou, Y.; Li, M.; Wu, J.; He, G.; Jiao, N. Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery.
Small 2024, 20, e2306510. DOI
145. Yang, W.; Wang, X.; Ge, Z.; Yu, H. Magnetically controlled millipede inspired soft robot for releasing drugs on target area in
stomach. IEEE. Robot. Autom. Lett. 2024, 9, 3846-53. DOI
146. Kaufman, G.; Jimenez, J.; Bradshaw, A.; et al. A stiff-soft composite fabrication strategy for fiber optic tethered microtools. Adv.
Mater. Technol. 2023, 8, 2202034. DOI
147. Zmyślony, M.; Dradrach, K.; Haberko, J.; Nałęcz-Jawecki, P.; Rogóż, M.; Wasylczyk, P. Optical pliers: micrometer-scale, light-
driven tools grown on optical fibers. Adv. Mater. 2020, 32, e2002779. DOI PubMed
148. Leber, A.; Dong, C.; Laperrousaz, S.; et al. Highly integrated multi-material fibers for soft robotics. Adv. Sci. 2023, 10, e2204016.
DOI PubMed PMC
149. Song, S.; Fallegger, F.; Trouillet, A.; Kim, K.; Lacour, S. P. Deployment of an electrocorticography system with a soft robotic
actuator. Sci. Robot. 2023, 8, eadd1002. DOI PubMed
150. Wei, L.; Huang, J.; Yan, Y.; et al. Substrate-independent, mechanically tunable, and scalable gelatin methacryloyl hydrogel coating
with drag-reducing and anti-freezing properties. ACS. Appl. Polym. Mater. 2022, 4, 4876-85. DOI
151. Xu, Y.; Hu, X.; Kundu, S.; et al. Silicon-based sensors for biomedical applications: a review. Sensors 2019, 19, 2908. DOI PubMed
PMC
152. Engin, M.; Demirel, A.; Engin, E. Z.; Fedakar, M. Recent developments and trends in biomedical sensors. Measurement 2005, 37,
173-88. DOI
153. Pang, Q.; Hu, H.; Zhang, H.; Qiao, B.; Ma, L. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors.
ACS. Appl. Mater. Interfaces.2022, 26536-47. DOI
154. Zhai, D.; Liu, B.; Shi, Y.; et al. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS.
Nano. 2013, 7, 3540-6. DOI
155. Lin, P. H.; Sheu, S. C.; Chen, C. W.; Huang, S. C.; Li, B. R. Wearable hydrogel patch with noninvasive, electrochemical glucose
sensor for natural sweat detection. Talanta 2022, 241, 123187. DOI PubMed
156. Qiu, Y.; Ashok, A.; Nguyen, C. C.; Yamauchi, Y.; Do, T. N.; Phan, H. P. Integrated sensors for soft medical robotics. Small 2024, 20,
e2308805. DOI PubMed
157. Qasaimeh, M. A.; Sokhanvar, S.; Dargahi, J.; Kahrizi, M. PVDF-based microfabricated tactile sensor for minimally invasive surgery.
J. Microelectromech. Syst. 2009, 18, 195-207. DOI
158. Li, W.; Liu, A.; Wang, Y.; et al. Implantable and degradable wireless passive protein-based tactile sensor for intracranial dynamic
pressure detection. Electronics 2023, 12, 2466. DOI
159. Chen, J.; Zhu, Y.; Chang, X.; et al. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31,
2104686. DOI
160. Lyu, Q.; Gong, S.; Lees, J. G.; et al. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously
and wirelessly. Nat. Commun. 2022, 13, 7259. DOI PubMed PMC
161. Kim, D. S.; Choi, Y. W.; Shanmugasundaram, A.; et al. Highly durable crack sensor integrated with silicone rubber cantilever for
measuring cardiac contractility. Nat. Commun. 2020, 11, 535. DOI PubMed PMC
162. Pignanelli, J.; Schlingman, K.; Carmichael, T. B.; Rondeau-Gagné, S.; Ahamed, M. J. A comparative analysis of capacitive-based
flexible PDMS pressure sensors. Sens. Actuators. A. Phys. 2019, 285, 427-36. DOI
163. Wang, C.; Hu, Y.; Liu, Y.; et al. Tissue-adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical
operation. Adv. Funct. Mater. 2023, 33, 2303696. DOI
164. Laschi, C.; Calisti, M. Soft robot reaches the deepest part of the ocean. Nature 2021, 591, 35-6. DOI PubMed
165. Calisti, M. Soft robotics in underwater legged locomotion: from octopus–inspired solutions to running robots. In: Laschi C, Rossiter
J, Iida F, Cianchetti M, Margheri L, editors. Soft robotics: trends, applications and challenges. Cham: Springer International
Publishing; 2017. pp. 31-6. DOI
166. García-Valdovinos, L. G.; Salgado-Jiménez, T.; Bandala-Sánchez, M.; Nava-Balanzar, L.; Hernández-Alvarado, R.; Cruz-Ledesma,
J. A. Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Adv. Robot. Syst. 2014, 11, 1. DOI
167. Wang, R.; Zhang, C.; Zhang, Y.; Tan, W.; Chen, W.; Liu, L. Soft underwater swimming robots based on artificial muscle. Adv.
Mater. Technol. 2023, 8, 2200962. DOI
168. Gomis-Bellmunt, O.; Campanile, F.; Galceran-Arellano, S.; Montesinos-Miracle, D.; Rull-Duran, J. Hydraulic actuator modeling for
optimization of mechatronic and adaptronic systems. Mechatronics 2008, 18, 634-40. DOI
169. Wang, R.; Zhang, C.; Zhang, Y.; et al. Fast-swimming soft robotic fish actuated by bionic muscle. Soft. Robot. 2024, 11, 845-56.
DOI
170. Zou, T.; Jian, X.; Al-tamimi, M.; Wu, X.; Wu, J. Development of a low-cost soft robot fish with biomimetic swimming performance.
J. Mech. Robot. 2024, 16, 061004. DOI
171. Luo, R.; Li, S.; Wang, F. Design and motion characteristics analysis of underwater biomimetic jellyfish based on shape memory alloy
springs. Ocean. Eng. 2024, 297, 117069. DOI
172. Gong, H.; Li, Z.; Meng, F.; Tan, B.; Hou, S. Octopus predation-inspired underwater robot capable of adsorption through opening and
closing claws. Appl. Sci. 2024, 14, 2250. DOI

