Page 104 - Read Online
P. 104

Kulkarni et al. Soft Sci. 2025, 5, 12  https://dx.doi.org/10.20517/ss.2023.51   Page 25 of 35

               All authors have read and agreed to the published version of the manuscript.


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               The authors would like to acknowledge funding from the Henry Luce Foundation through the Clare Boothe
               Luce Undergraduate Research Awards, the National Science Foundation Award #2106286.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Shneier, M. O.; Bostelman, R. V. Literature review of mobile robots for manufacturing. National Institute of Standards and
                    Technology; 2015.  DOI
               2.       Siciliano, B.; Khatib, O. Springer handbook of robotics. 2nd edition. Berlin Heidelberg: Springer; 2016.  DOI
               3.       Rindfleisch, A.; Fukawa, N.; Onzo, N. Robots in retail: rolling out the Whiz. AMS. Rev. 2022, 12, 238-44.  DOI
               4.       Sparrow, R.; Howard, M. Robots in agriculture: prospects, impacts, ethics, and policy. Precision. Agric. 2021, 22, 818-33.  DOI
               5.       Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; et al. A survey of robots in healthcare. Technologies 2021, 9, 8.  DOI
               6.       Decker, M.; Fischer, M.; Ott, I. Service robotics and human labor: a first technology assessment of substitution and cooperation.
                    Robot. Auton. Syst. 2017, 87, 348-54.  DOI
               7.       Maurtua, I.; Susperregi, L.; Fernández, A.; et al. MAINBOT - mobile robots for inspection and maintenance in extensive industrial
                    plants. Energy. Procedia. 2014, 49, 1810-9.  DOI
               8.       Rea, P.; Ottaviano, E. Design and development of an inspection robotic system for indoor applications. Robot. Comput. Integr.
                    Manuf. 2018, 49, 143-51.  DOI
               9.       Mapara, S. S.; Patravale, V. B. Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment. J.
                    Controlled. Release. 2017, 261, 337-51.  DOI  PubMed
               10.       Omisore, O. M.; Han, S.; Xiong, J.; Li, H.; Li, Z.; Wang, L. A review on flexible robotic systems for minimally invasive surgery.
                    IEEE. Trans. Syst. Man. Cybern. 2022, 52, 631-44.  DOI
               11.       Narayan, J.; Kalita, B.; Dwivedy, S. K. Development of robot-based upper limb devices for rehabilitation purposes: a systematic
                    review. Augment. Hum. Res. 2021, 6, 4.  DOI
               12.       Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot.
                    2016, 1, eaah3690.  DOI  PubMed
               13.       Bao, G.; Fang, H.; Chen, L.; et al. Soft robotics: academic insights and perspectives through bibliometric analysis. Soft. Robot. 2018,
                    5, 229-41.  DOI  PubMed  PMC
               14.       De Volder M, Moers AJM, Reynaerts D. Fabrication and control of miniature McKibben actuators. Sens. Actuators. A. Phys. 2011,
                    166, 111-6.  DOI
               15.       Robertson, M. A.; Sadeghi, H.; Florez, J. M.; Paik, J. Soft pneumatic actuator fascicles for high force and reliability. Soft. Robot.
                    2017, 4, 23-32.  DOI  PubMed  PMC
               16.       Whitesides, G. M. Soft robotics. Angew. Chem. Int. Ed. Engl. 2018, 57, 4258-73.  DOI  PubMed
               17.       Pinskier, J.; Howard, D. From bioinspiration to computer generation: developments in autonomous soft robot design. Adv. Intell. Syst.
                    2022, 4, 2100086.  DOI
               18.       Wang, H.; Totaro, M.; Beccai, L. Toward perceptive soft robots: progress and challenges. Adv. Sci. 2018, 5, 1800541.  DOI  PubMed
                    PMC
               19.       Harris, H.; Radecka, A.; Malik, R.; et al. Development and characterization of biostable hydrogel robotic actuators for implantable
   99   100   101   102   103   104   105   106   107   108   109