Page 107 - Read Online
P. 107
Page 28 of 35 Kulkarni et al. Soft Sci. 2025, 5, 12 https://dx.doi.org/10.20517/ss.2023.51
82. Dai, H.; Chen, Q.; Qin, H.; et al. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 2006,
39, 6584-9. DOI
83. Yang, H.; Xu, M.; Li, W.; Zhang, S. Design and Implementation of a soft robotic arm driven by SMA coils. IEEE. Trans. Ind.
Electron. 2019, 66, 6108-16. DOI
84. Feng, R.; Zhang, Y.; Liu, J.; Zhang, Y.; Li, J.; Baoyin, H. Soft robotic perspective and concept for planetary small body exploration.
Soft. Robot. 2022, 9, 889-99. DOI
85. Wu, S.; Hong, Y.; Zhao, Y.; Yin, J.; Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal
actuation. Sci. Adv. 2023, 9, eadf8014. DOI PubMed PMC
86. Katzschmann, R. K.; DelPreto, J.; MacCurdy, R.; Rus, D. Exploration of underwater life with an acoustically controlled soft robotic
fish. Sci. Robot. 2018, 3, eaar3449. DOI PubMed
87. Lindenroth, L.; Housden, R. J.; Wang, S.; Back, J.; Rhode, K.; Liu, H. Design and integration of a parallel, soft robotic end-effector
for extracorporeal ultrasound. IEEE. Trans. Biomed. Eng. 2020, 67, 2215-29. DOI PubMed PMC
88. Walker, J.; Zidek, T.; Harbel, C.; et al. Soft robotics: a review of recent developments of pneumatic soft actuators. Actuators 2020, 9,
3. DOI
89. Roche, E. T.; Horvath, M. A.; Wamala, I.; et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 2017, 9, eaaf3925. DOI
90. Liu, J.; Yin, L.; Chandler, J. H.; Chen, X.; Valdastri, P.; Zuo, S. A dual-bending endoscope with shape-lockable hydraulic actuation
and water-jet propulsion for gastrointestinal tract screening. Int. J. Med. Robot. 2021, 17, 1-13. DOI PubMed
91. Galloway, K. C.; Becker, K. P.; Phillips, B.; et al. Soft robotic grippers for biological sampling on deep reefs. Soft. Robot. 2016, 3,
23-33. DOI PubMed PMC
92. Palmieri, P.; Melchiorre, M.; Mauro, S. Design of a lightweight and deployable soft robotic arm. Robotics 2022, 11, 88. DOI
93. Der, M. P. A.; Djambazi, B.; Haberthur, Y.; et al. RoBoa: construction and evaluation of a steerable vine robot for search and rescue
applications. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft); New Haven, USA. IEEE; 2021. pp. 15-20.
DOI
94. Talas, S. K.; Baydere, B. A.; Altinsoy, T.; Tutcu, C.; Samur, E. Design and development of a growing pneumatic soft robot. Soft.
Robot. 2020, 7, 521-33. DOI PubMed
95. Stella, F.; Hughes, J. The science of soft robot design: a review of motivations, methods and enabling technologies. Front. Robot. AI.
2022, 9, 1059026. DOI PubMed PMC
96. Hartmann, F.; Baumgartner, M.; Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 2021, 33,
e2004413. DOI PubMed PMC
97. Wang, D.; Wang, J.; Shen, Z.; et al. Soft actuators and robots enabled by additive manufacturing. Annu. Rev. Control. Robot. Auton.
Syst. 2023, 6, 31-63. DOI
98. Hegde, C.; Su, J.; Tan, J. M. R.; He, K.; Chen, X.; Magdassi, S. Sensing in soft robotics. ACS. Nano. 2023, 17, 15277-307. DOI
PubMed PMC
99. Hajra, S.; Panda, S.; Khanberh, H.; et al. Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano.
Energy. 2023, 115, 108729. DOI
100. Armanini, C.; Boyer, F.; Mathew, A. T.; Duriez, C.; Renda, F. Soft robots modeling: a structured overview. IEEE. Trans. Robot.
2023, 39, 1728-48. DOI
101. Patel, D. K.; Huang, X.; Luo, Y.; et al. Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots. Adv. Mater.
Technol. 2023, 8, 2201259. DOI
102. Pal, S. Mechanical properties of biological materials. In: Design of artificial human joints & organs. Boston: Springer; 2014. pp. 23-
40. DOI
103. Li-Baboud, Y. S.; Virts, A.; Bostelman, R.; et al. Evaluation methods and measurement challenges for industrial exoskeletons.
Sensors 2023, 23, 5604. DOI PubMed PMC
104. Paternò, L.; Lorenzon, L. Soft robotics in wearable and implantable medical applications: translational challenges and future
outlooks. Front. Robot. AI. 2023, 10, 1075634. DOI PubMed PMC
105. Yin, S.; Jia, Z.; Li, X.; Zhu, J.; Xu, Y.; Li, T. Machine-learning-accelerated design of functional structural components in deep-sea
soft robots. Extreme. Mech. Lett. 2022, 52, 101635. DOI
106. Katzschmann, R. K.; Marchese, A. D.; Rus, D. Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh MA, Khatib O,
Kumar V, editors. Experimental Robotics. Cham: Springer International Publishing; 2016. pp. 405-20. DOI
107. Wen, T.; Hu, J.; Zhang, J.; Li, X.; Kang, S.; Zhang, N. Design, performance analysis, and experiments of a soft robot for rescue. J.
Mech. Robot. 2024, 16, 071011. DOI
108. Milana, E. Soft robotics for infrastructure protection. Front. Robot. AI. 2022, 9, 1026891. DOI PubMed PMC
109. Lukaski, H. C.; Bolonchuk, W. W. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat.
Space. Environ. Med. 1988, 59, 1163-9. PubMed
110. Al-Shura, A. N. Holism. In: Integrative cardiovascular Chinese medicine. Elsevier; 2014. pp. 3-26. Available from: https://books.
google.com/books?hl=zh-CN&lr=&id=i1gXAwAAQBAJ&oi=fnd&pg=PP1&dq=Integrative+Cardiovascular+Chinese+Medicine&
ots=-N_4hWGvUg&sig=UKyIyyFsPyToM_6_RKgqxHBRUrE#v=onepage&q=Integrative%20Cardiovascular%20Chinese%
20Medicine&f=false. [Last accessed on 13 Jan 2025].
111. Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based

