Page 23 - Read Online
P. 23

Page 12 of 12                            Jan et al. Soft Sci 2024;4:10  https://dx.doi.org/10.20517/ss.2023.54

               31.      Rasel MS, Maharjan P, Salauddin M, et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-
                   sensitive pressure sensing applications. Nano Energy 2018;49:603-13.  DOI
               32.      Aazem I, Mathew DT, Radhakrishnan S, et al. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics.
                   RSC Adv 2022;12:10545-72.  DOI  PubMed  PMC
               33.      Jo S, Kim I, Jayababu N, Kim D. Performance-enhanced triboelectric nanogenerator based on the double-layered electrode effect.
                   Polymers 2020;12:2854.  DOI  PubMed  PMC
               34.      Xing C, Tian Y, Yu Z, Li Z, Meng B, Peng Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective
                   electrodes for high-performance triboelectric nanogenerators. ACS Appl Mater Interfaces 2022;14:36741-52.  DOI
               35.      Busolo T, Ura DP, Kim SK, et al. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric
                   performance. Nano Energy 2019;57:500-6.  DOI
               36.      Maji D, Das S. Analysis of plasma-induced morphological changes in sputtered thin films over compliant elastomer. J Phys D Appl
                   Phys 2014;47:105401.  DOI
               37.      Han J, Wang Y, Ma Y, Wang C. Enhanced energy harvesting performance of triboelectric nanogenerators via dielectric property
                   regulation. ACS Appl Mater Interfaces 2023;15:31795-802.  DOI
               38.      Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z. Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to
                   applications. Nano Energy 2015;14:126-38.  DOI
               39.      Tantraviwat D, Buarin P, Suntalelat S, et al. Highly dispersed porous polydimethylsiloxane for boosting power-generating
                   performance of triboelectric nanogenerators. Nano Energy 2020;67:104214.  DOI
               40.      Garcia C, Trendafilova I, Guzman de Villoria R, Sanchez del Rio J. Self-powered pressure sensor based on the triboelectric effect and
                   its analysis using dynamic mechanical analysis. Nano Energy 2018;50:401-9.  DOI
               41.      He J, Xie Z, Yao K, et al. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics.
                   Nano Energy 2021;81:105590.  DOI
               42.      Lin MF, Xiong J, Wang J, Parida K, Lee PS. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications.
                   Nano Energy 2018;44:248-55.  DOI
               43.      Liu Z, Zhao Z, Zeng X, Fu X, Hu Y. Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for
                   respiratory and pulse monitoring. Nano Energy 2019;59:295-301.  DOI
               44.      Zhu G, Yang WQ, Zhang T, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett
                   2014;14:3208-13.  DOI
               45.      Zhao Z, Huang Q, Yan C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by
                   textile technologies. Nano Energy 2020;70:104528.  DOI
               46.      Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile
                   mapping. Adv Mater 2016;28:2896-903.  DOI
               47.      Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy
                   harvesting and tactile sensing. Sci Adv 2017;3:e1700015.  DOI  PubMed  PMC
               48.      Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based
                   on a triboelectric nanogenerator. Nano Energy 2020;75:105073.  DOI
               49.      Zhong Y, Wang J, Han L, et al. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified
                   micropatterned PDMS film. Sens Actuator A Phys 2023;349:114013.  DOI
               50.      Zheng Z, Yu D, Wang B, Guo Y. Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human
                   motion and vehicle movement. Chem Eng J 2022;446:137393.  DOI
   18   19   20   21   22   23   24   25   26   27   28