Page 23 - Read Online
P. 23
Page 12 of 12 Jan et al. Soft Sci 2024;4:10 https://dx.doi.org/10.20517/ss.2023.54
31. Rasel MS, Maharjan P, Salauddin M, et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-
sensitive pressure sensing applications. Nano Energy 2018;49:603-13. DOI
32. Aazem I, Mathew DT, Radhakrishnan S, et al. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics.
RSC Adv 2022;12:10545-72. DOI PubMed PMC
33. Jo S, Kim I, Jayababu N, Kim D. Performance-enhanced triboelectric nanogenerator based on the double-layered electrode effect.
Polymers 2020;12:2854. DOI PubMed PMC
34. Xing C, Tian Y, Yu Z, Li Z, Meng B, Peng Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective
electrodes for high-performance triboelectric nanogenerators. ACS Appl Mater Interfaces 2022;14:36741-52. DOI
35. Busolo T, Ura DP, Kim SK, et al. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric
performance. Nano Energy 2019;57:500-6. DOI
36. Maji D, Das S. Analysis of plasma-induced morphological changes in sputtered thin films over compliant elastomer. J Phys D Appl
Phys 2014;47:105401. DOI
37. Han J, Wang Y, Ma Y, Wang C. Enhanced energy harvesting performance of triboelectric nanogenerators via dielectric property
regulation. ACS Appl Mater Interfaces 2023;15:31795-802. DOI
38. Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z. Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to
applications. Nano Energy 2015;14:126-38. DOI
39. Tantraviwat D, Buarin P, Suntalelat S, et al. Highly dispersed porous polydimethylsiloxane for boosting power-generating
performance of triboelectric nanogenerators. Nano Energy 2020;67:104214. DOI
40. Garcia C, Trendafilova I, Guzman de Villoria R, Sanchez del Rio J. Self-powered pressure sensor based on the triboelectric effect and
its analysis using dynamic mechanical analysis. Nano Energy 2018;50:401-9. DOI
41. He J, Xie Z, Yao K, et al. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics.
Nano Energy 2021;81:105590. DOI
42. Lin MF, Xiong J, Wang J, Parida K, Lee PS. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications.
Nano Energy 2018;44:248-55. DOI
43. Liu Z, Zhao Z, Zeng X, Fu X, Hu Y. Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for
respiratory and pulse monitoring. Nano Energy 2019;59:295-301. DOI
44. Zhu G, Yang WQ, Zhang T, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett
2014;14:3208-13. DOI
45. Zhao Z, Huang Q, Yan C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by
textile technologies. Nano Energy 2020;70:104528. DOI
46. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile
mapping. Adv Mater 2016;28:2896-903. DOI
47. Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy
harvesting and tactile sensing. Sci Adv 2017;3:e1700015. DOI PubMed PMC
48. Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based
on a triboelectric nanogenerator. Nano Energy 2020;75:105073. DOI
49. Zhong Y, Wang J, Han L, et al. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified
micropatterned PDMS film. Sens Actuator A Phys 2023;349:114013. DOI
50. Zheng Z, Yu D, Wang B, Guo Y. Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human
motion and vehicle movement. Chem Eng J 2022;446:137393. DOI

