Page 22 - Read Online
P. 22

Jan et al. Soft Sci 2024;4:10  https://dx.doi.org/10.20517/ss.2023.54           Page 11 of 12

               REFERENCES
               1.       Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal
                   healthcare. Adv Mater 2016;28:4338-72.  DOI  PubMed
               2.       Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range
                   human-machine interfacing. Nano Lett 2019;19:1143-50.  DOI
               3.       Chen L, Lu M, Yang H, et al. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS
                   Nano 2020;14:8191-201.  DOI
               4.       Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy
                   practice and correction. Nano Lett 2022;14:225.  DOI  PubMed  PMC
               5.       Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by
                   flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.  DOI
               6.       Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 2016;7:12744.
                   DOI  PubMed  PMC
               7.       Wang Y, Yu Y, Wei X, Narita F. Self-powered wearable piezoelectric monitoring of human motion and physiological signals for the
                   postpandemic era: a review. Adv Mater Technol 2022;7:2200318.  DOI
               8.       Nie B, Li R, Cao J, Brandt JD, Pan T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv Mater
                   2015;27:6055-62.  DOI  PubMed
               9.       Zhang Y, Hu Y, Zhu P, et al. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with
                   assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl Mater Interfaces 2017;9:35968-76.  DOI
               10.      Win Zaw NY, Yun J, Goh TS, et al. All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-
                   powered human motion detection. Energy 2022;247:123422.  DOI
               11.      Xia X, Zhou Z, Shang Y, Yang Y, Zi Y. Metallic glass-based triboelectric nanogenerators. Nat Commun 2023;14:1023.  DOI  PubMed
                   PMC
               12.      Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy
                   Environ Sci 2013;6:3576-83.  DOI
               13.      Kim KN, Kim SY, Choi SH, et al. All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers
                   based on MXene nanoflakes. Adv Electron Mater 2022;8:2200819.  DOI
               14.      Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators
                   and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 2017;27:1604462.
                   DOI
               15.      Yang W, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking. ACS Nano 2013;7:11317-24.  DOI
               16.      Xing F, Jie Y, Cao X, Li T, Wang N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy.
                   Nano Energy 2017;42:138-42.  DOI
               17.      Zi Y, Wu C, Ding W, Wang ZL. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as
                   limited by air breakdown. Adv Funct Mater 2017;27:1700049.  DOI
               18.      Chu Y, Cao Z, Xu J, et al. Theoretical study of nanogenerator with resistive load and its sensing performance as a motion sensor. Nano
                   Energy 2021;81:105628.  DOI
               19.      Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv
                   Funct Mater 2014;24:3332-40.  DOI
               20.      Niu S, Liu Y, Wang S, et al. Theory of sliding-mode triboelectric nanogenerators. Adv Mater 2013;25:6184-93.  DOI
               21.      Jiang T, Chen X, Han CB, Tang W, Wang ZL. Theoretical study of rotary freestanding triboelectric nanogenerators. Adv Funct Mater
                   2015;25:2928-38.  DOI
               22.      Chu Y, Han R, Meng F, et al. Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging
                   and grounding conditions. Nano Energy 2021;89:106383.  DOI
               23.      Wang J, Qian S, Yu J, et al. Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing.
                   Nanomaterials 2019;9:1304.  DOI  PubMed  PMC
               24.      Chang KB, Parashar P, Shen LC, et al. A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure
                   distribution inside prosthetic limb. Nano Energy 2023;111:108397.  DOI
               25.      Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically rough structured and self-powered pressure sensor textile for motion
                   sensing and pulse monitoring. ACS Appl Mater Interfaces 2020;12:1597-605.  DOI
               26.      Cao Y, Guo Y, Chen Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless
                   human motion detection. Nano Energy 2022;92:106689.  DOI
               27.     Kim DW, Lee JH, Kim JK, Jeong U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 2020;12:6.  DOI
               28.      Ryu  H,  Lee  JH,  Kim  TY,  et  al.  High-performance  triboelectric  nanogenerators  based  on  solid  polymer  electrolytes  with
                   asymmetric pairing of ions. Adv Energy Mater 2017;7:1700289.  DOI
               29.      Sang  M,  Kim  K,  Shin  J,  Yu  KJ.  Ultra-thin  flexible  encapsulating  materials  for  soft  bio-integrated  electronics.  Adv  Sci
                   2022;9:2202980.  DOI  PubMed  PMC
               30.      Kim NI, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of
                   physiological and muscle motions. Soft Sci 2022;2:8.  DOI
   17   18   19   20   21   22   23   24   25   26   27