Page 22 - Read Online
P. 22
Jan et al. Soft Sci 2024;4:10 https://dx.doi.org/10.20517/ss.2023.54 Page 11 of 12
REFERENCES
1. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal
healthcare. Adv Mater 2016;28:4338-72. DOI PubMed
2. Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range
human-machine interfacing. Nano Lett 2019;19:1143-50. DOI
3. Chen L, Lu M, Yang H, et al. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS
Nano 2020;14:8191-201. DOI
4. Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy
practice and correction. Nano Lett 2022;14:225. DOI PubMed PMC
5. Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by
flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773. DOI
6. Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 2016;7:12744.
DOI PubMed PMC
7. Wang Y, Yu Y, Wei X, Narita F. Self-powered wearable piezoelectric monitoring of human motion and physiological signals for the
postpandemic era: a review. Adv Mater Technol 2022;7:2200318. DOI
8. Nie B, Li R, Cao J, Brandt JD, Pan T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv Mater
2015;27:6055-62. DOI PubMed
9. Zhang Y, Hu Y, Zhu P, et al. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with
assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl Mater Interfaces 2017;9:35968-76. DOI
10. Win Zaw NY, Yun J, Goh TS, et al. All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-
powered human motion detection. Energy 2022;247:123422. DOI
11. Xia X, Zhou Z, Shang Y, Yang Y, Zi Y. Metallic glass-based triboelectric nanogenerators. Nat Commun 2023;14:1023. DOI PubMed
PMC
12. Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy
Environ Sci 2013;6:3576-83. DOI
13. Kim KN, Kim SY, Choi SH, et al. All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers
based on MXene nanoflakes. Adv Electron Mater 2022;8:2200819. DOI
14. Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators
and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 2017;27:1604462.
DOI
15. Yang W, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking. ACS Nano 2013;7:11317-24. DOI
16. Xing F, Jie Y, Cao X, Li T, Wang N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy.
Nano Energy 2017;42:138-42. DOI
17. Zi Y, Wu C, Ding W, Wang ZL. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as
limited by air breakdown. Adv Funct Mater 2017;27:1700049. DOI
18. Chu Y, Cao Z, Xu J, et al. Theoretical study of nanogenerator with resistive load and its sensing performance as a motion sensor. Nano
Energy 2021;81:105628. DOI
19. Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv
Funct Mater 2014;24:3332-40. DOI
20. Niu S, Liu Y, Wang S, et al. Theory of sliding-mode triboelectric nanogenerators. Adv Mater 2013;25:6184-93. DOI
21. Jiang T, Chen X, Han CB, Tang W, Wang ZL. Theoretical study of rotary freestanding triboelectric nanogenerators. Adv Funct Mater
2015;25:2928-38. DOI
22. Chu Y, Han R, Meng F, et al. Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging
and grounding conditions. Nano Energy 2021;89:106383. DOI
23. Wang J, Qian S, Yu J, et al. Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing.
Nanomaterials 2019;9:1304. DOI PubMed PMC
24. Chang KB, Parashar P, Shen LC, et al. A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure
distribution inside prosthetic limb. Nano Energy 2023;111:108397. DOI
25. Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically rough structured and self-powered pressure sensor textile for motion
sensing and pulse monitoring. ACS Appl Mater Interfaces 2020;12:1597-605. DOI
26. Cao Y, Guo Y, Chen Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless
human motion detection. Nano Energy 2022;92:106689. DOI
27. Kim DW, Lee JH, Kim JK, Jeong U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 2020;12:6. DOI
28. Ryu H, Lee JH, Kim TY, et al. High-performance triboelectric nanogenerators based on solid polymer electrolytes with
asymmetric pairing of ions. Adv Energy Mater 2017;7:1700289. DOI
29. Sang M, Kim K, Shin J, Yu KJ. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv Sci
2022;9:2202980. DOI PubMed PMC
30. Kim NI, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of
physiological and muscle motions. Soft Sci 2022;2:8. DOI

