Page 112 - Read Online
P. 112

Page 24 of 30                            Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07

                    biomarkers in remote settings. Adv. Mater Technol 2022;7:2200249.  DOI
               53.       Kim J, Wu Y, Luan H, et al. A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements
                    of nutrients in sweat and supply of vitamins through the skin. Adv Sci 2022;9:e2103331.  DOI  PubMed  PMC
               54.       Wu Y, Wu M, Vázquez-Guardado A, et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics
                    and photopharmacology. Nat Commun 2022;13:5571.  DOI  PubMed  PMC
               55.       Bai K, Cheng X, Xue Z, et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational
                    bottom-up design strategy. Sci Adv 2020;6:eabb7417.  DOI
               56.       Chen S, Liu Z, Du H, et al. Electromechanically reconfigurable optical nano-kirigami. Nat Commun 2021;12:1299.  DOI  PubMed
                    PMC
               57.       Fan X, Pan Z, Chen S, Li Y, Zhao Z, Pan T. 3D flexible frequency selective surface with stable electromagnetic transmission
                    properties. Adv. Mater Technol 2022;7:2101316.  DOI
               58.       Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat
                    Nanotechnol 2006;1:201-7.  DOI
               59.       Yu C, Duan Z, Yuan P, et al. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel
                    structures (Adv. Mater. 11/2013). Adv Mater 2013;25:1540-1540.  DOI
               60.       McCracken JM, Xu S, Badea A, et al. Deterministic integration of biological and soft materials onto 3D microscale cellular
                    frameworks. Adv Biosyst 2017;1:1700068.  DOI  PubMed  PMC
               61.       Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat
                    Rev Mater 2017:2.  DOI
               62.       Kim BH, Liu F, Yu Y, et al. Mechanically guided post-assembly of 3D electronic systems. Adv Funct Mater 2018;28:1803149.  DOI
               63.       Cheng  X,  Zhang  Y.  Micro/nanoscale  3D  assembly  by  rolling,  folding,  curving,  and  buckling  approaches.  Adv  Mater
                    2019;31:e1901895.  DOI  PubMed
               64.       Li S, Han M, Rogers JA, Zhang Y, Huang Y, Wang H. Mechanics of buckled serpentine structures formed via mechanics-guided,
                    deterministic three-dimensional assembly. J Mech Phys Solids 2019;125:736-48.  DOI
               65.       Nan K, Wang H, Ning X, et al. Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer
                    films. ACS Nano 2019;13:449-57.  DOI
               66.       Lim S, Luan H, Zhao S, et al. Assembly of foldable 3D microstructures using graphene hinges. Adv Mater 2020;32:e2001303.  DOI
               67.       Zhao  H,  Lee  Y,  Han  M,  et  al.  Nanofabrication  approaches  for  functional  three-dimensional  architectures.  Nano  Today
                    2020;30:100825.  DOI
               68.       Park Y, Chung TS, Lee G, Rogers JA. Materials chemistry of neural interface technologies and recent advances in three-dimensional
                    systems. Chem Rev 2022;122:5277-316.  DOI  PubMed
               69.       Yoon HJ, Lee G, Kim JT, et al. Biodegradable, three-dimensional colorimetric fliers for environmental monitoring. Sci Adv
                    2022;8:eade3201.  DOI  PubMed  PMC
               70.       Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable
                    electronics with high areal coverage. Soft Matter 2013;9:8062-70.  DOI  PubMed  PMC
               71.       Xu S, Yan Z, Jang KI, et al. Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by
                    compressive buckling. Science 2015;347:154-9.  DOI
               72.       Huang S, Liu Y, Guo CF, Ren Z. A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au
                    nanotrough network. Adv Electron Mater 2017;3:1600534.  DOI
               73.       Ning X, Wang H, Yu X, et al. Three-dimensional multiscale, multistable, and geometrically diverse microstructures with tunable
                    vibrational dynamics assembled by compressive buckling. Adv Funct Mater 2017;27:1605914.  DOI  PubMed  PMC
               74.       Li H, Wang X, Zhu F, et al. Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by
                    compressive buckling. J Appl Mech 2018;85:121002.  DOI
               75.       Wang H, Ning X, Li H, et al. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. J Mech
                    Phys Solids 2018;112:187-208.  DOI  PubMed  PMC
               76.       Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. Printed origami structures. Adv Mater 2010;22:2251-4.  DOI  PubMed
               77.       Shi Y, Zhang F, Nan K, et al. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive
                    buckling. Extreme Mech Lett 2017;11:105-10.  DOI
               78.       Li C, Xue Y, Han M, et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change.
                    Matter 2021;4:1377-90.  DOI
               79.       Lamoureux A, Lee K, Shlian M, Forrest SR, Shtein M. Dynamic kirigami structures for integrated solar tracking. Nat Commun
                    2015;6:8092.  DOI  PubMed  PMC
               80.       Neville RM, Scarpa F, Pirrera A. Shape morphing kirigami mechanical metamaterials. Sci Rep 2016;6:31067.  DOI  PubMed  PMC
               81.       Humood M, Shi Y, Han M, et al. Fabrication and deformation of 3D multilayered kirigami microstructures. Small 2018;14:e1703852.
                    DOI
               82.       Zheng M, Chen Y, Liu Z, et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates.
                    Microsyst Nanoeng 2019;5:54.  DOI  PubMed  PMC
               83.       Bashandeh K, Humood M, Lee J, et al. The effect of defects on the cyclic behavior of polymeric 3D kirigami structures. Extreme
                    Mech Lett 2020;36:100650.  DOI
   107   108   109   110   111   112   113   114   115   116   117