Page 112 - Read Online
P. 112
Page 24 of 30 Kim et al. Soft Sci 2023;3:16 https://dx.doi.org/10.20517/ss.2023.07
biomarkers in remote settings. Adv. Mater Technol 2022;7:2200249. DOI
53. Kim J, Wu Y, Luan H, et al. A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements
of nutrients in sweat and supply of vitamins through the skin. Adv Sci 2022;9:e2103331. DOI PubMed PMC
54. Wu Y, Wu M, Vázquez-Guardado A, et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics
and photopharmacology. Nat Commun 2022;13:5571. DOI PubMed PMC
55. Bai K, Cheng X, Xue Z, et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational
bottom-up design strategy. Sci Adv 2020;6:eabb7417. DOI
56. Chen S, Liu Z, Du H, et al. Electromechanically reconfigurable optical nano-kirigami. Nat Commun 2021;12:1299. DOI PubMed
PMC
57. Fan X, Pan Z, Chen S, Li Y, Zhao Z, Pan T. 3D flexible frequency selective surface with stable electromagnetic transmission
properties. Adv. Mater Technol 2022;7:2101316. DOI
58. Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat
Nanotechnol 2006;1:201-7. DOI
59. Yu C, Duan Z, Yuan P, et al. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel
structures (Adv. Mater. 11/2013). Adv Mater 2013;25:1540-1540. DOI
60. McCracken JM, Xu S, Badea A, et al. Deterministic integration of biological and soft materials onto 3D microscale cellular
frameworks. Adv Biosyst 2017;1:1700068. DOI PubMed PMC
61. Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat
Rev Mater 2017:2. DOI
62. Kim BH, Liu F, Yu Y, et al. Mechanically guided post-assembly of 3D electronic systems. Adv Funct Mater 2018;28:1803149. DOI
63. Cheng X, Zhang Y. Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv Mater
2019;31:e1901895. DOI PubMed
64. Li S, Han M, Rogers JA, Zhang Y, Huang Y, Wang H. Mechanics of buckled serpentine structures formed via mechanics-guided,
deterministic three-dimensional assembly. J Mech Phys Solids 2019;125:736-48. DOI
65. Nan K, Wang H, Ning X, et al. Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer
films. ACS Nano 2019;13:449-57. DOI
66. Lim S, Luan H, Zhao S, et al. Assembly of foldable 3D microstructures using graphene hinges. Adv Mater 2020;32:e2001303. DOI
67. Zhao H, Lee Y, Han M, et al. Nanofabrication approaches for functional three-dimensional architectures. Nano Today
2020;30:100825. DOI
68. Park Y, Chung TS, Lee G, Rogers JA. Materials chemistry of neural interface technologies and recent advances in three-dimensional
systems. Chem Rev 2022;122:5277-316. DOI PubMed
69. Yoon HJ, Lee G, Kim JT, et al. Biodegradable, three-dimensional colorimetric fliers for environmental monitoring. Sci Adv
2022;8:eade3201. DOI PubMed PMC
70. Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable
electronics with high areal coverage. Soft Matter 2013;9:8062-70. DOI PubMed PMC
71. Xu S, Yan Z, Jang KI, et al. Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by
compressive buckling. Science 2015;347:154-9. DOI
72. Huang S, Liu Y, Guo CF, Ren Z. A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au
nanotrough network. Adv Electron Mater 2017;3:1600534. DOI
73. Ning X, Wang H, Yu X, et al. Three-dimensional multiscale, multistable, and geometrically diverse microstructures with tunable
vibrational dynamics assembled by compressive buckling. Adv Funct Mater 2017;27:1605914. DOI PubMed PMC
74. Li H, Wang X, Zhu F, et al. Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by
compressive buckling. J Appl Mech 2018;85:121002. DOI
75. Wang H, Ning X, Li H, et al. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. J Mech
Phys Solids 2018;112:187-208. DOI PubMed PMC
76. Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. Printed origami structures. Adv Mater 2010;22:2251-4. DOI PubMed
77. Shi Y, Zhang F, Nan K, et al. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive
buckling. Extreme Mech Lett 2017;11:105-10. DOI
78. Li C, Xue Y, Han M, et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change.
Matter 2021;4:1377-90. DOI
79. Lamoureux A, Lee K, Shlian M, Forrest SR, Shtein M. Dynamic kirigami structures for integrated solar tracking. Nat Commun
2015;6:8092. DOI PubMed PMC
80. Neville RM, Scarpa F, Pirrera A. Shape morphing kirigami mechanical metamaterials. Sci Rep 2016;6:31067. DOI PubMed PMC
81. Humood M, Shi Y, Han M, et al. Fabrication and deformation of 3D multilayered kirigami microstructures. Small 2018;14:e1703852.
DOI
82. Zheng M, Chen Y, Liu Z, et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates.
Microsyst Nanoeng 2019;5:54. DOI PubMed PMC
83. Bashandeh K, Humood M, Lee J, et al. The effect of defects on the cyclic behavior of polymeric 3D kirigami structures. Extreme
Mech Lett 2020;36:100650. DOI

