Page 116 - Read Online
P. 116

Page 28 of 30                            Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07

               176.      Guo Z, Yu Y, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodynet
                    application. Adv Energy Mater 2022;12:2102993.  DOI
               177.      Miao L, Song Y, Ren Z, et al. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting. Adv Mater
                    2021;33:e2102691.  DOI
               178.      Ling Y, Zhuang X, Xu Z, et al. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with
                    programmed geometries and outstanding electromechanical properties. ACS Nano 2018;12:12456-63.  DOI
               179.      Pan Y, Yang Z, Li C, Hassan SU, Shum HC. Plant-inspired TransfOrigami microfluidics. Sci Adv 2022;8:eabo1719.  DOI  PubMed
                    PMC
               180.      Sim K, Ershad F, Zhang Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal
                    mapping of electrophysiological activity. Nat Electron 2020;3:775-84.  DOI
               181.      Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic
                    biomarkers. Nat Biomed Eng 2021;5:737-48.  DOI
               182.      Bai W, Shin J, Fu R, et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural
                    activity. Nat Biomed Eng 2019;3:644-54.  DOI
               183.      Zhang Y, Mickle AD, Gutruf P, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and
                    pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5:eaaw5296.  DOI  PubMed  PMC
               184.      Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023;7:405-23.
                    DOI  PubMed  PMC
               185.      Wang X, Feiner R, Luan H, et al. Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid
                    tissues. Extreme Mech Lett 2020;35:100634.  DOI
               186.      Song E, Xie Z, Bai W, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat
                    Biomed Eng 2021;5:759-71.  DOI
               187.      Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat
                    Biomed Eng 2021;5:749-58.  DOI
               188.      Han M, Chen L, Aras K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during
                    cardiac surgery. Nat Biomed Eng 2020;4:997-1009.  DOI  PubMed  PMC
               189.      Park Y, Chung TS, Rogers JA. Three dimensional bioelectronic interfaces to small-scale biological systems. Curr Opin Biotechnol
                    2021;72:1-7.  DOI  PubMed
               190.      Zhao J, Li W, Guo X, Wang H, Rogers JA, Huang Y. Theoretical modeling of tunable vibrations of three-dimensional serpentine
                    structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin 2021;46:107-14.  DOI
               191.      Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded
                    vascular channels. Sci Adv 2019;5:eaaw2459.  DOI  PubMed  PMC
               192.      Xue Z, Jin T, Xu S, et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci Adv 2022;8:eabm6922.  DOI
                    PubMed  PMC
               193.      Gu Y, Wang C, Kim N, et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat Nanotechnol
                    2022;17:292-300.  DOI  PubMed  PMC
               194.      Chen Z, Anandakrishnan N, Xu Y, Zhao R. Compressive buckling fabrication of 3D cell-laden microstructures. Adv Sci
                    2021;8:e2101027.  DOI  PubMed  PMC
               195.      Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun
                    2020;11:1180.  DOI  PubMed  PMC
               196.      Park Y, Franz CK, Ryu H, et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered
                    assembloids. Sci Adv 2021:7.  DOI  PubMed  PMC
               197.      Huang Q, Tang B, Romero JC, et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv 2022;8:eabq5031.  DOI
                    PubMed  PMC
               198.      Lou Z, Wang L, Jiang K, Shen G. Programmable three-dimensional advanced materials based on nanostructures as building blocks
                    for flexible sensors. Nano Today 2019;26:176-98.  DOI
               199.      Zhang F, Jin T, Xue Z, Zhang Y. Recent progress in three-dimensional flexible physical sensors. Int J Smart Nano Mater 2022;13:17-
                    41.  DOI
               200.      Wu  S,  Peng  S,  Yu  Y,  Wang  C.  Strategies  for  designing  stretchable  strain  sensors  and  conductors.  Adv  Mater  Technol
                    2020;5:1900908.  DOI
               201.      Kim BH, Li K, Kim JT, et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 2021;597:503-10.
                    DOI
               202.      Goh GL, Agarwala S, Yong WY. 3D printing of microfluidic sensor for soft robots: a preliminary study in design and fabrication.
                    Available from: https://dr.ntu.edu.sg/handle/10356/84409 [Last accessed on 9 May 2023].
               203.      Truby RL, Wehner M, Grosskopf AK, et al. Soft somatosensitive actuators via embedded 3D printing. Adv Mater 2018;30:e1706383.
                    DOI
               204.      Peng S, Wang Z, Lin J, et al. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable
                    sacrificial mold. Adv Funct Mater 2021;31:2008729.  DOI
               205.      Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-
   111   112   113   114   115   116   117   118   119   120   121