Page 114 - Read Online
P. 114
Page 26 of 30 Kim et al. Soft Sci 2023;3:16 https://dx.doi.org/10.20517/ss.2023.07
114. Zhao H, Kim Y, Wang H, et al. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale
engineered muscle tissues. Proc Natl Acad Sci U S A 2021:118. DOI PubMed PMC
115. Bai N, Wang L, Xue Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad
range. ACS Nano 2022;16:4338-47. DOI
116. Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater
2022;32:2110417. DOI
117. Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat
Nanotechnol 2011;6:402-7. DOI
118. Silverberg JL, Evans AA, McLeod L, et al. Applied origami. Using origami design principles to fold reprogrammable mechanical
metamaterials. Science 2014;345:647-50. DOI
119. Eidini M, Paulino GH. Unraveling metamaterial properties in zigzag-base folded sheets. Sci Adv 2015;1:e1500224. DOI PubMed
PMC
120. Zhang H, Wu J, Fang D, Zhang Y. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic
operation and amplitude modulation. Sci Adv 2021:7. DOI PubMed PMC
121. Zhang KP, Liao YF, Qiu B, et al. 3D printed embedded metamaterials. Small 2021;17:e2103262. DOI
122. Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater 2017;29:1703817. DOI
123. Lin R, Li Y, Mao X, Zhou W, Liu R. Hybrid 3D printing all-in-one heterogenous rigidity assemblies for soft electronics. Adv Mater
Technol 2019;4:1900614. DOI
124. Goh GL, Zhang H, Chong TH, Yeong WY. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater
2021;7:2100445. DOI
125. Aditya Khatokar J, Vinay N, Sudhir Bale A, et al. A study on improved methods in micro-electromechanical systems technology.
Mater Today Proc 2021;43:3784-90. DOI
126. Hassanin H, Sheikholeslami G, Sareh P, Ishaq RB. Microadditive manufacturing technologies of 3D microelectromechanical
systems. Adv Eng Mater 2021;23:2100422. DOI
127. Martyniuk M, Silva KKMBD, Putrino G, et al. Optical microelectromechanical systems technologies for spectrally adaptive sensing
and imaging. Adv Funct Mater 2022;32:2103153. DOI
128. Chircov C, Grumezescu AM. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines 2022;13:164.
DOI PubMed PMC
129. Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv
Optical Mater 2020;8:1900653. DOI
130. Koene I, Viitala R, Kuosmanen P. Internet of things based monitoring of large rotor vibration with a microelectromechanical systems
accelerometer. IEEE Access 2019;7:92210-9. DOI
131. Gao L, Zhang Y, Zhang H, et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic
nanostructures. ACS Nano 2015;9:5968-75. DOI
132. Liu Y, Yan Z, Lin Q, et al. Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and
experimental validation. Adv Funct Mater 2016;26:2909-18. DOI PubMed PMC
133. Nan K, Luan H, Yan Z, et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially
nonuniform compressive buckling. Adv Funct Mater 2017;27:1604281. DOI PubMed PMC
134. Shi Y, Pei P, Cheng X, et al. An analytic model of two-level compressive buckling with applications in the assembly of free-standing
3D mesostructures. Soft Matter 2018;14:8828-37. DOI
135. Zhao H, Li K, Han M, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proc Natl Acad Sci U S
A 2019;116:13239-48. DOI PubMed PMC
136. Zhang Y, Yan Z, Nan K, et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes.
Proc Natl Acad Sci U S A 2015;112:11757-64. DOI PubMed PMC
137. Rafsanjani A, Bertoldi K. Buckling-induced kirigami. Phys Rev Lett 2017;118:084301. DOI PubMed
138. Ning X, Wang X, Zhang Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and
kirigami: a review. Adv Mater Interf 2018;5:1800284. DOI
139. Abdullah AM, Li X, Braun PV, Rogers JA, Hsia KJ. Kirigami-inspired self-assembly of 3D structures. Adv Funct Mater
2020;30:1909888. DOI
140. Bashandeh K, Lee J, Wu Q, et al. Mechanics and deformation of shape memory polymer kirigami microstructures. Extreme Mech
Lett 2020;39:100831. DOI
141. Yan Z, Zhang F, Wang J, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced
materials. Adv Funct Mater 2016;26:2629-39. DOI
142. Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in
neonatal and pediatric intensive-care units. Nat Med 2020;26:418-29. DOI PubMed PMC
143. Fu H, Nan K, Bai W, et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater
2018;17:268-76. DOI PubMed PMC
144. Zhang L, Zhang Z, Weisbecker H, et al. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic
implants, and reconfigurable telecommunication. Sci Adv 2022;8:eade0838. DOI PubMed PMC

