Page 114 - Read Online
P. 114

Page 26 of 30                            Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07

               114.      Zhao H, Kim Y, Wang H, et al. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale
                    engineered muscle tissues. Proc Natl Acad Sci U S A 2021:118.  DOI  PubMed  PMC
               115.      Bai N, Wang L, Xue Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad
                    range. ACS Nano 2022;16:4338-47.  DOI
               116.      Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater
                    2022;32:2110417.  DOI
               117.      Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat
                    Nanotechnol 2011;6:402-7.  DOI
               118.      Silverberg JL, Evans AA, McLeod L, et al. Applied origami. Using origami design principles to fold reprogrammable mechanical
                    metamaterials. Science 2014;345:647-50.  DOI
               119.      Eidini M, Paulino GH. Unraveling metamaterial properties in zigzag-base folded sheets. Sci Adv 2015;1:e1500224.  DOI  PubMed
                    PMC
               120.      Zhang H, Wu J, Fang D, Zhang Y. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic
                    operation and amplitude modulation. Sci Adv 2021:7.  DOI  PubMed  PMC
               121.      Zhang KP, Liao YF, Qiu B, et al. 3D printed embedded metamaterials. Small 2021;17:e2103262.  DOI
               122.      Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater 2017;29:1703817.  DOI
               123.      Lin R, Li Y, Mao X, Zhou W, Liu R. Hybrid 3D printing all-in-one heterogenous rigidity assemblies for soft electronics. Adv Mater
                    Technol 2019;4:1900614.  DOI
               124.      Goh GL, Zhang H, Chong TH, Yeong WY. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater
                    2021;7:2100445.  DOI
               125.      Aditya Khatokar J, Vinay N, Sudhir Bale A, et al. A study on improved methods in micro-electromechanical systems technology.
                    Mater Today Proc 2021;43:3784-90.  DOI
               126.      Hassanin H, Sheikholeslami G, Sareh P, Ishaq RB. Microadditive manufacturing technologies of 3D microelectromechanical
                    systems. Adv Eng Mater 2021;23:2100422.  DOI
               127.      Martyniuk M, Silva KKMBD, Putrino G, et al. Optical microelectromechanical systems technologies for spectrally adaptive sensing
                    and imaging. Adv Funct Mater 2022;32:2103153.  DOI
               128.      Chircov C, Grumezescu AM. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines 2022;13:164.
                    DOI  PubMed  PMC
               129.      Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv
                    Optical Mater 2020;8:1900653.  DOI
               130.      Koene I, Viitala R, Kuosmanen P. Internet of things based monitoring of large rotor vibration with a microelectromechanical systems
                    accelerometer. IEEE Access 2019;7:92210-9.  DOI
               131.      Gao L, Zhang Y, Zhang H, et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic
                    nanostructures. ACS Nano 2015;9:5968-75.  DOI
               132.      Liu Y, Yan Z, Lin Q, et al. Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and
                    experimental validation. Adv Funct Mater 2016;26:2909-18.  DOI  PubMed  PMC
               133.      Nan K, Luan H, Yan Z, et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially
                    nonuniform compressive buckling. Adv Funct Mater 2017;27:1604281.  DOI  PubMed  PMC
               134.      Shi Y, Pei P, Cheng X, et al. An analytic model of two-level compressive buckling with applications in the assembly of free-standing
                    3D mesostructures. Soft Matter 2018;14:8828-37.  DOI
               135.      Zhao H, Li K, Han M, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proc Natl Acad Sci U S
                    A 2019;116:13239-48.  DOI  PubMed  PMC
               136.      Zhang Y, Yan Z, Nan K, et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes.
                    Proc Natl Acad Sci U S A 2015;112:11757-64.  DOI  PubMed  PMC
               137.      Rafsanjani A, Bertoldi K. Buckling-induced kirigami. Phys Rev Lett 2017;118:084301.  DOI  PubMed
               138.      Ning X, Wang X, Zhang Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and
                    kirigami: a review. Adv Mater Interf 2018;5:1800284.  DOI
               139.      Abdullah AM, Li X, Braun PV, Rogers JA, Hsia KJ. Kirigami-inspired self-assembly of 3D structures. Adv Funct Mater
                    2020;30:1909888.  DOI
               140.      Bashandeh K, Lee J, Wu Q, et al. Mechanics and deformation of shape memory polymer kirigami microstructures. Extreme Mech
                    Lett 2020;39:100831.  DOI
               141.      Yan Z, Zhang F, Wang J, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced
                    materials. Adv Funct Mater 2016;26:2629-39.  DOI
               142.      Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in
                    neonatal and pediatric intensive-care units. Nat Med 2020;26:418-29.  DOI  PubMed  PMC
               143.      Fu H, Nan K, Bai W, et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater
                    2018;17:268-76.  DOI  PubMed  PMC
               144.      Zhang L, Zhang Z, Weisbecker H, et al. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic
                    implants, and reconfigurable telecommunication. Sci Adv 2022;8:eade0838.  DOI  PubMed  PMC
   109   110   111   112   113   114   115   116   117   118   119