Page 117 - Read Online
P. 117
Kim et al. Soft Sci 2023;3:16 https://dx.doi.org/10.20517/ss.2023.07 Page 29 of 30
9. DOI
206. Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami
sensor arrays. Nat Commun 2022;13:2121. DOI PubMed PMC
207. Liu J, Jiang S, Xiong W, Zhu C, Li K, Huang Y. Self-healing kirigami assembly strategy for conformal electronics. Adv Funct Mater
2022;32:2109214. DOI
208. Katiyar AK, Thai KY, Yun WS, Lee J, Ahn JH. Breaking the absorption limit of Si toward SWIR wavelength range via strain
engineering. Sci Adv 2020;6:eabb0576. DOI PubMed PMC
209. Cheng X, Zhang F, Bo R, et al. An anti-fatigue design strategy for 3D ribbon-shaped flexible electronics. Adv Mater
2021;33:e2102684. DOI
210. Wang Y, Li X, Fan S, et al. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Appl
Mater Interf 2021;13:8901-8. DOI
211. Zhalmuratova D, Chung H. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Appl Polym Mater
2020;2:1073-91. DOI
212. Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature
2019;575:330-5. DOI PubMed
213. Sun Y, Li D, Wu M, et al. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsyst
Nanoeng 2022;8:37. DOI PubMed PMC
214. Patel DK, Huang X, Luo Y, et al. Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots. Adv Mater
Technol 2023;8:2201259. DOI
215. Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv Mater 2021;33:e2003387.
DOI PubMed
216. Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell
Syst 2021;3:2000223. DOI
217. Ning X, Yu X, Wang H, et al. Mechanically active materials in three-dimensional mesostructures. Sci Adv 2018;4:eaat8313. DOI
PubMed PMC
218. Xiang S, Su Y, Yin H, Li C, Zhu M. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy
2021;85:105965. DOI
219. Han M, Guo X, Chen X, et al. Submillimeter-scale multimaterial terrestrial robots. Sci Robot 2022;7:eabn0602. DOI
220. Deng H, Sattari K, Xie Y, Liao P, Yan Z, Lin J. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D
shaping. Nat Commun 2020;11:6325. DOI PubMed PMC
221. Zhu Y, Birla M, Oldham KR, Filipov ET. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid
shape morphing. Adv Funct Mater 2020;30:2003741. DOI
222. Yi S, Wang L, Chen Z, et al. High-throughput fabrication of soft magneto-origami machines. Nat Commun 2022;13:4177. DOI
PubMed PMC
223. Lin Z, Novelino LS, Wei H, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small
2020;16:e2002229. DOI
224. Xiang X, Fu Z, Zhang S, et al. The mechanical characteristics of graded Miura-ori metamaterials. Mater Des 2021;211:110173. DOI
225. Kadic M, Milton GW, van Hecke M, Wegener M. 3D metamaterials. Nat Rev Phys 2019;1:198-210. DOI
226. Cheng L, Tang T, Yang H, et al. The twisting of dome-like metamaterial from brittle to ductile. Adv Sci 2021;8:2002701. DOI
227. Pan R, Liu Z, Zhu W, Du S, Gu C, Li J. Asymmetrical chirality in 3D bended metasurface. Adv Funct Mater 2021;31:2100689. DOI
228. Farzaneh A, Pawar N, Portela CM, Hopkins JB. Sequential metamaterials with alternating Poisson’s ratios. Nat Commun
2022;13:1041. DOI PubMed PMC
229. Zhong Q, Ding H, Gao B, He Z, Gu Z. Advances of microfluidics in biomedical engineering. Adv Mater Technol 2019;4:1800663.
DOI
230. Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: innovations in materials and their
fabrication and functionalization. Anal Chem 2020;92:150-68. DOI PubMed PMC
231. Raj M K, Chakraborty S. PDMS microfluidics: a mini review. J Appl Polym Sci 2020;137:48958. DOI
232. Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible microfluidics: fundamentals, recent developments, and applications.
Micromachines 2019;10:830. DOI PubMed PMC
233. Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and
implications on the field of healthcare. Bio-des Manuf 2021;4:311-43. DOI
234. Weigel N, Männel MJ, Thiele J. Flexible materials for high-resolution 3D printing of microfluidic devices with integrated droplet size
regulation. ACS Appl Mater Interf 2021;13:31086-101. DOI PubMed PMC
235. Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering
constructs. Lab Chip 2014;14:2202-11. DOI PubMed PMC
236. Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011;23:H178-83. DOI
PubMed
237. Wang Z, Jiang H, Wu G, et al. Shape-programmable three-dimensional microfluidic structures. ACS Appl Mater Interf
2022;14:15599-607. DOI PubMed PMC

