Page 117 - Read Online
P. 117

Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07           Page 29 of 30

                    9.  DOI
               206.      Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami
                    sensor arrays. Nat Commun 2022;13:2121.  DOI  PubMed  PMC
               207.      Liu J, Jiang S, Xiong W, Zhu C, Li K, Huang Y. Self-healing kirigami assembly strategy for conformal electronics. Adv Funct Mater
                    2022;32:2109214.  DOI
               208.      Katiyar AK, Thai KY, Yun WS, Lee J, Ahn JH. Breaking the absorption limit of Si toward SWIR wavelength range via strain
                    engineering. Sci Adv 2020;6:eabb0576.  DOI  PubMed  PMC
               209.      Cheng  X,  Zhang  F,  Bo  R,  et  al.  An  anti-fatigue  design  strategy  for  3D  ribbon-shaped  flexible  electronics.  Adv  Mater
                    2021;33:e2102684.  DOI
               210.      Wang Y, Li X, Fan S, et al. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Appl
                    Mater Interf 2021;13:8901-8.  DOI
               211.      Zhalmuratova D, Chung H. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Appl Polym Mater
                    2020;2:1073-91.  DOI
               212.      Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature
                    2019;575:330-5.  DOI  PubMed
               213.      Sun Y, Li D, Wu M, et al. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsyst
                    Nanoeng 2022;8:37.  DOI  PubMed  PMC
               214.      Patel DK, Huang X, Luo Y, et al. Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots. Adv Mater
                    Technol 2023;8:2201259.  DOI
               215.      Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv Mater 2021;33:e2003387.
                    DOI  PubMed
               216.      Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell
                    Syst 2021;3:2000223.  DOI
               217.      Ning X, Yu X, Wang H, et al. Mechanically active materials in three-dimensional mesostructures. Sci Adv 2018;4:eaat8313.  DOI
                    PubMed  PMC
               218.      Xiang S, Su Y, Yin H, Li C, Zhu M. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy
                    2021;85:105965.  DOI
               219.      Han M, Guo X, Chen X, et al. Submillimeter-scale multimaterial terrestrial robots. Sci Robot 2022;7:eabn0602.  DOI
               220.      Deng H, Sattari K, Xie Y, Liao P, Yan Z, Lin J. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D
                    shaping. Nat Commun 2020;11:6325.  DOI  PubMed  PMC
               221.      Zhu Y, Birla M, Oldham KR, Filipov ET. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid
                    shape morphing. Adv Funct Mater 2020;30:2003741.  DOI
               222.      Yi S, Wang L, Chen Z, et al. High-throughput fabrication of soft magneto-origami machines. Nat Commun 2022;13:4177.  DOI
                    PubMed  PMC
               223.      Lin Z, Novelino LS, Wei H, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small
                    2020;16:e2002229.  DOI
               224.      Xiang X, Fu Z, Zhang S, et al. The mechanical characteristics of graded Miura-ori metamaterials. Mater Des 2021;211:110173.  DOI
               225.      Kadic M, Milton GW, van Hecke M, Wegener M. 3D metamaterials. Nat Rev Phys 2019;1:198-210.  DOI
               226.      Cheng L, Tang T, Yang H, et al. The twisting of dome-like metamaterial from brittle to ductile. Adv Sci 2021;8:2002701.  DOI
               227.      Pan R, Liu Z, Zhu W, Du S, Gu C, Li J. Asymmetrical chirality in 3D bended metasurface. Adv Funct Mater 2021;31:2100689.  DOI
               228.      Farzaneh A, Pawar N, Portela CM, Hopkins JB. Sequential metamaterials with alternating Poisson’s ratios. Nat Commun
                    2022;13:1041.  DOI  PubMed  PMC
               229.      Zhong Q, Ding H, Gao B, He Z, Gu Z. Advances of microfluidics in biomedical engineering. Adv Mater Technol 2019;4:1800663.
                    DOI
               230.      Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: innovations in materials and their
                    fabrication and functionalization. Anal Chem 2020;92:150-68.  DOI  PubMed  PMC
               231.      Raj M K, Chakraborty S. PDMS microfluidics: a mini review. J Appl Polym Sci 2020;137:48958.  DOI
               232.      Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible microfluidics: fundamentals, recent developments, and applications.
                    Micromachines 2019;10:830.  DOI  PubMed  PMC
               233.      Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and
                    implications on the field of healthcare. Bio-des Manuf 2021;4:311-43.  DOI
               234.      Weigel N, Männel MJ, Thiele J. Flexible materials for high-resolution 3D printing of microfluidic devices with integrated droplet size
                    regulation. ACS Appl Mater Interf 2021;13:31086-101.  DOI  PubMed  PMC
               235.      Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering
                    constructs. Lab Chip 2014;14:2202-11.  DOI  PubMed  PMC
               236.      Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011;23:H178-83.  DOI
                    PubMed
               237.      Wang  Z,  Jiang  H,  Wu  G,  et  al.  Shape-programmable  three-dimensional  microfluidic  structures.  ACS  Appl  Mater  Interf
                    2022;14:15599-607.  DOI  PubMed  PMC
   112   113   114   115   116   117   118   119   120   121   122