Page 113 - Read Online
P. 113

Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07           Page 25 of 30

               84.       Guo X, Ni X, Li J, et al. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and
                    negative thermal expansion. Adv Mater 2021;33:e2004919.  DOI
               85.       Dogan E, Bhusal A, Cecen B, Miri AK. 3D printing metamaterials towards tissue engineering. Appl Mater Today 2020;20:100752.
                    DOI  PubMed  PMC
               86.       Xiong Z, Li M, Hao S, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special
                    deformation design of constituent material. ACS Appl Mater Interf 2021;13:39915-24.  DOI
               87.       Okutani C, Yokota T, Miyazako H, Someya T. 3D printed spring-type electronics with liquid metals for highly stretchable conductors
                    and inductive strain/pressure sensors. Adv Mater Technol 2022;7:2101657.  DOI
               88.       Yoon J, Li L, Semichaevsky AV, et al. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in
                    luminescent waveguides. Nat Commun 2011;2:343.  DOI
               89.       Guo CF, Lan Y, Sun T, Ren Z. Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes.
                    Nano Energy 2014;8:110-7.  DOI
               90.       Dagdeviren C, Joe P, Tuzman OL, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy
                    harvesting, sensing and actuation. Extreme Mech Lett 2016;9:269-81.  DOI
               91.       Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and
                    storage devices. Adv Funct Mater 2017;27:1704353.  DOI
               92.       Nan K, Kang SD, Li K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci
                    Adv 2018;4:eaau5849.  DOI  PubMed  PMC
               93.       Liu R, Takakuwa M, Li A, et al. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and
                    supercapacitors. Adv Energy Mater 2020;10:2000523.  DOI
               94.       Sheng H, Zhang X, Liang J, et al. Recent advances of energy solutions for implantable bioelectronics. Adv Healthc Mater
                    2021;10:e2100199.  DOI
               95.       Jiang F, Zhou X, Lv J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid
                    triboelectric and piezoelectric energy harvesting. Adv Mater 2022;34:e2200042.  DOI
               96.       Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac
                    electrophysiology. Nat Biomed Eng 2017;1:0038.  DOI  PubMed  PMC
               97.       Bai W, Yang H, Ma Y, et al. Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline
                    silicon. Adv Mater 2018;30:e1801584.  DOI
               98.       Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng
                    2018;2:687-95.  DOI  PubMed  PMC
               99.       Yu X, Wang H, Ning X, et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing.
                    Nat Biomed Eng 2018;2:165-72.  DOI
               100.      Bandodkar AJ, Lee SP, Huang I, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat
                    Electron 2020;3:554-62.  DOI
               101.      Kim S, Lee B, Reeder JT, et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and
                    impedance measurement capabilities. Proc Natl Acad Sci U S A 2020;117:27906-15.  DOI  PubMed  PMC
               102.      Choi J, Chen S, Deng Y, et al. Skin-interfaced microfluidic systems that combine hard and soft materials for demanding applications
                    in sweat capture and analysis. Adv Healthc Mater 2021;10:e2000722.  DOI
               103.      Liang Q, Hahn SK, Rogers JA. Advanced materials and devices for medical applications. APL Materials 2021;9:090401.  DOI
               104.      Ryu H, Seo MH, Rogers JA. Bioresorbable metals for biomedical applications: from mechanical components to electronic devices.
                    Adv Healthc Mater 2021;10:e2002236.  DOI  PubMed
               105.      Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices
                    and soft biological tissues. Nat Mater 2021;20:1559-70.  DOI  PubMed  PMC
               106.      Nguyen TK, Yadav S, Truong TA, et al. Integrated, transparent silicon carbide electronics and sensors for radio frequency biomedical
                    therapy. ACS Nano 2022;16:10890-903.  DOI  PubMed  PMC
               107.      Tian L, Li Y, Webb RC, et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Adv Funct Mater
                    2017;27:1701282.  DOI
               108.      Guo X, Wang X, Ou D, et al. Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling.
                    NPJ Flex Electron 2018:2.  DOI
               109.      Kim SB, Lee K, Raj MS, et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time
                    tracking of sweat loss and electrolyte composition. Small 2018;14:e1802876.  DOI
               110.      Bandodkar AJ, Gutruf P, Choi J, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical,
                    colorimetric, and volumetric analysis of sweat. Sci Adv 2019;5:eaav3294.  DOI  PubMed  PMC
               111.      Bai N, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high
                    sensitivity. Nat Commun 2020;11:209.  DOI  PubMed  PMC
               112.      Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor
                    based on ceramic nanofibers. Adv Sci 2020;7:2000258.  DOI  PubMed  PMC
               113.      Ryu D, Kim DH, Price JT, et al. Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high-
                    and low-resource health settings. Proc Natl Acad Sci U S A 2021:118.  DOI  PubMed  PMC
   108   109   110   111   112   113   114   115   116   117   118